“常数变易法”有效的原理

常数变易法

为什么写这篇文章

学过“常数变易法”的同学请直接点击“常数变易法的原理”
这里只讲述常数变易法的原理,为什么要用常数变易法请参见参考资料《常数变易法的解释 》

在学习高数的过程中,关于为什么在解一阶线性微分方程的时候要使用常数变易法,为什么可以使用常数变易法,常数变易法为什么是有效并且正确的,老师都语焉不详,一笔带过,导致一直不能很好地理解其中的数学思想。自己也只能接受老师的解释,将这个方法强行合理化。

但是最近再次看到一阶线性微分方程的求解,看到直接给出来的求解公式一头雾水,再去翻书,始终还是感觉隔靴搔痒,雾里看花,始终不自在,所以上网搜索了一下,搜到了一篇相关文章(常数变易法的解释 ),终于明白了其中蕴含的深刻而巧妙的数学思想,喜不自禁。

所以在此记录下个人的理解,一则梳理自己的思路,二则可供感兴趣的同学参考,倘能有助于大家理解常数变易法的“自然”性,亦是幸甚。

什么是常数变易法?

有以下一阶线性微分方程: (1) y ′ + P ( x ) y = Q ( x ) y' +P(x)y=Q(x) \tag1 y+P(x)y=Q(x)(1)其中, P ( x ) ̸ ≡ 0 P(x)\not \equiv 0 P(x)̸0 Q ( x ) ̸ ≡ 0 Q(x)\not \equiv 0 Q(x)̸0

若解其对应的齐次方程: (2) y ′ + P ( x ) y = 0 y' +P(x)y=0\tag2 y+P(x)y=0(2)则易有: y = C e − ∫ P ( x ) d x ( C ≠ 0 ) y=Ce^{-\int P(x)dx}(C\neq 0) y=CeP(x)dx(C̸=0)即为齐次方程的通解

这时,我们可以用常数变易法来求非齐次方程 ( 1 ) (1) (1)的通解,即将齐次方程 ( 2 ) (2) (2)的通解中的常数 C C C换成(变易为)一个关于 x x x的未知函数 u ( x ) u(x) u(x),变易之后,非齐次方程通解表示如下: (3) y = u ( x ) ⋅ e − ∫ P ( x ) d x ( u ( x ) ̸ ≡ 0 ) y=u(x)\cdot e^{-\int P(x)dx} \Big(u(x)\not\equiv 0\Big)\tag3 y=u(x)eP(x)dx(u(x)̸0)(3)于是将该通解形式代入原方程 ( 1 ) (1) (1),可以解得: u ( x ) = ∫ Q ( x ) e ∫ P ( x ) d x d x + C u(x)=\int Q(x)e^{\int P(x)dx}dx+C u(x)=Q(x)eP(x)dxdx+C将上式代入 ( 3 ) (3) (3)式,即可解得: y = e − ∫ P ( x ) d x ⋅ ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y=e^{-\int P(x)dx}\cdot (\int Q(x)e^{\int P(x)dx}dx+C) y=eP(x)dx(Q(x)eP(x)dxdx+C)这就是所谓常数变易法
可以看到,这里把常数 C C C 直接代换为了函数 u ( x ) u(x) u(x) ,显得十分生硬不自然,没有什么说服力。然而书上很少会对这个方法的由来作出介绍,所以想必会使很多人感到困惑。

错误的理解

对于常数变易法,我以前的理解是:
既然 y = C e − ∫ P ( x ) d x ( C ≠ 0 ) y=Ce^{-\int P(x)dx}(C\neq 0) y=CeP(x)dx(C̸=0) 可以使齐次方程 y ′ + P ( x ) y = 0 y' +P(x)y=0 y+P(x)y=0 成立,那么在其基础上增添一个函数,就应该使得该方程运算结果多出一个与自由项相关的余项 Q ( x ) Q(x) Q(x),所以可以使用常数变易法。
这样的理解是基于表面形式做出的一个解释,然而还是不能够明确地说明这个方法的正当性与正确性。
所以我们需要进一步探究其内在的原理。

常数变易法的原理

基本

容易理解,我们可以把任意函数表示成为两个函数之积,即 (4) y ( x ) = u ( x ) ⋅ v ( x ) y(x)=u(x)\cdot v(x)\tag4 y(x)=u(x)v(x)(4) y ( x ) y(x) y(x) 求导,得: y ′ ( x ) = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) y'(x)=u'(x)v(x)+u(x)v'(x) y(x)=u(x)v(x)+u(x)v(x)

计算

y ( x ) = u ( x ) ⋅ v ( x ) y(x)=u(x)\cdot v(x) y(x)=u(x)v(x) y ′ ( x ) = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) y'(x)=u'(x)v(x)+u(x)v'(x) y(x)=u(x)v(x)+u(x)v(x) 代入非齐次方程 ( 1 ) (1) (1),整理得到: (5) u ′ ( x ) v ( x ) + u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] = Q ( x ) u'(x)v(x)+u(x)\cdot [v'(x)+P(x)v(x)]=Q(x)\tag5 u(x)v(x)+u(x)[v(x)+P(x)v(x)]=Q(x)(5)由解一阶线性微分方程的常用方法分离变量法容易想到,如果没有 u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] u(x)\cdot [v'(x)+P(x)v(x)] u(x)[v(x)+P(x)v(x)] 这一项,我们就可以简便地利用分离变量法进行计算。
现在单独考察 u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] u(x)\cdot [v'(x)+P(x)v(x)] u(x)[v(x)+P(x)v(x)] 这一项。其中 u ( x ) u(x) u(x) 不确定,不能用来保持 u ( x ) ⋅ [ v ′ ( x ) + P ( x ) v ( x ) ] ̸ ≡ 0 u(x)\cdot [v'(x)+P(x)v(x)]\not\equiv0 u(x)[v(x)+P(x)v(x)]̸0 ,所以考虑另一个因式 v ′ ( x ) + P ( x ) v ( x ) v'(x)+P(x)v(x) v(x)+P(x)v(x) 。显然 v ( x ) v(x) v(x) 是不确定的,在 u ( x ) u(x) u(x) 不确定的情况下,可以任意取值。则假设 v ( x ) v(x) v(x) 满足 (6) v ′ ( x ) + P ( x ) v ( x ) ≡ 0 v'(x)+P(x)v(x)\equiv0\tag6 v(x)+P(x)v(x)0(6) 观察式 ( 6 ) (6) (6) ,可以看到其形式与式 ( 2 ) (2) (2) 基本一致。
求解式 ( 6 ) (6) (6),可以得其通解形式: (7) v ( x ) = C 1 ⋅ e − ∫ P ( x ) d x v(x)=C_1\cdot e^{-\int P(x)dx}\tag7 v(x)=C1eP(x)dx(7)将所得通解代入 ( 4 ) (4) (4),则 (8) y ( x ) = u ( x ) ⋅ C 1 ⋅ e − ∫ P ( x ) d x y(x)=u(x)\cdot C_1\cdot e^{-\int P(x)dx}\tag8 y(x)=u(x)C1eP(x)dx(8) ( 8 ) (8) (8) 式代入 ( 5 ) (5) (5) 式,得到: u ′ ( x ) ⋅ C 1 ⋅ e − ∫ P ( x ) d x = Q ( x ) u'(x)\cdot C_1\cdot e^{-\int P(x)dx}=Q(x) u(x)C1eP(x)dx=Q(x)使用分离变量法,容易解得: (9) u ( x ) = 1 C 1 ∫ Q ( x ) ⋅ e ∫ P ( x ) d x d x + C 2 u(x)=\frac1{C_1}\int Q(x)\cdot e^{\int P(x)dx}dx+C_2\tag9 u(x)=C11Q(x)eP(x)dxdx+C2(9) ( 7 ) (7) (7) ( 9 ) (9) (9) 同时代入式 ( 4 ) (4) (4) ,则 y ( x ) = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C 1 C 2 ) y(x)=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C_1C_2) y(x)=eP(x)dx(Q(x)eP(x)dxdx+C1C2) C = C 1 C 2 C=C_1C_2 C=C1C2,则得原一阶线性微分方程的通解为: y ( x ) = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y(x)=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C) y(x)=eP(x)dx(Q(x)eP(x)dxdx+C)

推广

这一部分是在知乎看到了关于“常数变易法”在高阶作用的问题之后增补的

问题链接:常数变易法思想的来源或本质是什么?
现在有一般 n n n阶线性微分方程 (10) P n ( x ) y ( n ) + P n − 1 ( x ) y ( n − 1 ) + P n − 2 ( x ) y ( n − 2 ) . . . + P 1 ( x ) y ′ + P 0 ( x ) y = Q ( x ) P_{n}(x)y^{(n)}+P_{n-1}(x)y^{(n-1)}+P_{n-2}(x)y^{(n-2)}...+P_{1}(x)y'+P_{0}(x)y=Q(x)\tag{10} Pn(x)y(n)+Pn1(x)y(n1)+Pn2(x)y(n2)...+P1(x)y+P0(x)y=Q(x)(10)
由前述有, y ( x ) y(x) y(x)可以表示为 y ( x ) = u ( x ) v ( x ) y(x)=u(x)v(x) y(x)=u(x)v(x)
现在我们考察两函数乘积的高阶微分形式。
比较二项式展开定理我们不难发现,对 y = u v y=uv y=uv的高阶微分具有类似的形式。
比如: ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv ( u v ) ′ ′ = ( u ′ v + u v ′ ) ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ (uv)''=(u'v+uv')'=u''v+2u'v'+uv'' (uv)=(uv+uv)=uv+2uv+uv . . . ... ...
从原理上来看,展开多项式的每一项都应有 n n n阶微分,而这 n n n阶微分分别分配在 u 、 v u、v uv上;对于多项式的每一项,相当于任选 k k k个微分算子作用于 u u u,则另有 ( n − k ) (n-k) (nk)个微分算子作用于 v v v,与二项式展开定理本质相同,所以展开形式也应相同。
则有式 ( 11 ) (11) (11) (11) ( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ( 1 ) + C n 2 u ( n − 2 ) v ( 2 ) + . . . + C n n − 1 u ( 1 ) v ( n − 1 ) + C n n u v ( n ) (uv)^{(n)}=C_n^0u^{(n)}v+C_n^1u^{(n-1)}v^{(1)}+C_n^2u^{(n-2)}v^{(2)}+...+C_n^{n-1}u^{(1)}v^{(n-1)}+C_n^nuv^{(n)}\tag{11} (uv)(n)=Cn0u(n)v+Cn1u(n1)v(1)+Cn2u(n2)v(2)+...+Cnn1u(1)v(n1)+Cnnuv(n)(11)
将这个一般形式代回式 ( 10 ) (10) (10),假设将 u u u作为主要研究对象(以 v v v为主要研究对象亦可,二者地位相同),则按 u u u的导数降阶排列多项式: (12) M n − 1 ( x ) u ( n ) + M n − 2 ( x ) u ( n − 1 ) + . . . + M 0 ( x ) u ′ + ( P n ( x ) v ( n ) + P n − 1 ( x ) v ( n − 1 ) + . . . + P 1 ( x ) v ′ + P 0 ( x ) v ) u = Q ( x ) M_{n-1}(x)u^{(n)}+M_{n-2}(x)u^{(n-1)}+...+M_0(x)u'+\bigl(P_n(x)v^{(n)}+P_{n-1}(x)v^{(n-1)}+...+P_{1}(x)v'+P_0(x)v\bigr)u=Q(x)\tag{12} Mn1(x)u(n)+Mn2(x)u(n1)+...+M0(x)u+(Pn(x)v(n)+Pn1(x)v(n1)+...+P1(x)v+P0(x)v)u=Q(x)(12)
其中, M i ( x ) M_i(x) Mi(x)为关于 x x x的多项式。
按一阶情况下的原理,可以令多项式 ( P n ( x ) v ( n ) + P n − 1 ( x ) v ( n − 1 ) + . . . + P 1 ( x ) v ′ + P 0 ( x ) v ) ≡ 0 \bigl(P_n(x)v^{(n)}+P_{n-1}(x)v^{(n-1)}+...+P_{1}(x)v'+P_0(x)v\bigr)\equiv0 (Pn(x)v(n)+Pn1(x)v(n1)+...+P1(x)v+P0(x)v)0消去 u u u项。解 v v v即为解式 10 10 10对应的齐次线性微分方程。
则剩下的式子为 M n − 1 ( x ) u ( n ) + M n − 2 ( x ) u ( n − 1 ) + . . . + M 0 ( x ) u ′ = Q ( x ) M_{n-1}(x)u^{(n)}+M_{n-2}(x)u^{(n-1)}+...+M_0(x)u'=Q(x) Mn1(x)u(n)+Mn2(x)u(n1)+...+M0(x)u=Q(x)
α ( x ) = u ′ ( x ) \alpha(x)=u'(x) α(x)=u(x),则上式化为 (13) M n − 1 ( x ) α ( n − 1 ) + M n − 2 ( x ) α ( n − 2 ) + . . . + M 0 ( x ) α = Q ( x ) M_{n-1}(x)\alpha^{(n-1)}+M_{n-2}(x)\alpha^{(n-2)}+...+M_0(x)\alpha=Q(x)\tag{13} Mn1(x)α(n1)+Mn2(x)α(n2)+...+M0(x)α=Q(x)(13)
比较式 ( 12 ) 、 ( 13 ) (12)、(13) (12)(13),可以看到:通过常数变易法,成功地把求解一个 n n n阶线性微分非齐次方程的问题,为了求解一个对应的 n n n阶线性微分齐次方程和一个 ( n − 1 ) (n-1) (n1)阶线性微分非齐次方程的问题。

总结

很显然我们可以看到,常数变易法是蕴含了很深刻的数学思想、具有很强健的数学基础的解题方法,并非无根之萍,更不是突发奇想或是强行合理。
但是从其原理上来讲,将其称呼为“常数变易法”是不太妥当的,本质上它并非是单纯地使用一个函数来替代了齐次方程通解的常数。
常数变易法的称呼应该说为了便于日常应用和直观记忆,这里可以不必纠结。

参考资料

[1] lookof,常数变易法的解释
[2] 崔士襄,邯郸农业高等专科学校,“常数变易法”来历的探讨

  • 197
    点赞
  • 452
    收藏
    觉得还不错? 一键收藏
  • 29
    评论
英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 模的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值