《机器学习实战》第一部分 分类 第3章 决策树

决策树的一般流程:
(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

在构造决策树时,第一个需要解决的问题就是,如何确定出哪个特征在划分数据分类是起决定性作用,或者说使用哪个特征分类能实现最好的分类效果。这样,为了找到决定性的特征,划分最好的结果,我们就需要评估每个特征。当找到最优特征后,依此特征,数据集就被划分为几个数据子集,这些数据自己会分布在该决策点的所有分支中。此时,如果某个分支下的数据属于同一类型,则该分支下的数据分类已经完成,无需进行下一步的数据集分类;如果分支下的数据子集内数据不属于同一类型,那么就要重复划分该数据集的过程,按照划分原始数据集相同的原则,确定出该数据子集中的最优特征,继续对数据子集进行分类,直到所有的特征已经遍历完成,或者所有叶结点分支下的数据具有相同的分类。

相关公式:
香农熵(entropy),简称熵,用来定量表示信息的聚合程度,是信息的期望值。
这里写图片描述
信息增益指的是划分数据集前后信息发生的变化。
这里写图片描述

问题描述:
海洋生物数据:
这里写图片描述
有两个特征:不浮出水面是否可以生存,是否有脚蹼,标签是鱼类和非鱼类,现在我们需要建立一个决策树分类器,根据这个分类器对其它动物进行预测,预测的准确性暂且不讨论。

数据离散化:
这里写图片描述

python代码实现:

1、创建数据集

def createDataSet():
    """
    创建测试数据集
    :return:
    """
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    feature = ['no surfacing','flippers']
    return dataSet, feature

2、计算给定数据集的熵

def calcShannonEnt(dataSet):
    """
    计算香农熵
    :param dataSet: 数据集
    :return: 香农熵
    """
    # 得到数据集的数据行数
    numEntries = len(dataSet)
    # 创建一个空字典
    featureCounts = {}
    for featVec in dataSet:
        # 获取每行最后一个数值,作为键值
        currentFeature = featVec[-1]
        # 如果当前键值不存在,则将键值添加进字典,键值对应的数值为0,意思是出现零次
        if currentFeature not in featureCounts.keys():
            featureCounts[currentFeature] = 0
        # 当前键值数值加1,代表出现次数多一次
        featureCounts[currentFeature] += 1
    # 定义香农熵
    shannonEnt = 0.0
    for key in featureCounts:
        # 键值出现概率
        prob = float(featureCounts[key]) / numEntries
        # 以2为底求对数
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

3、划分数据集

def splitDataSet(dataSet, axis, value):
    """
    划分数据集
    :param dataSet: 待划分的数据集
    :param axis:  每行特征的下标
    :param value: 对应的特征值
    :return:
    """
    # 创建一个空列表
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            # extend 在列表末尾追加另一个序列中的多个值
            reducedFeatVec.extend(featVec[axis+1:])
            # append 在列表末尾添加新对象
            retDataSet.append(reducedFeatVec)
    return retDataSet

4、遍历整个数据集,切分数据,求熵,找到最佳的特征划分方式

def chooseBestFeatureToSplit(dataSet):
    """
    遍历整个数据集,切分数据,求熵,找到最佳的特征划分方式
    :param dataSet:
    :return:
    """
    # 特征数量,去掉最后的标签
    numFeatures = len(dataSet[0]) -1
    # 计算整个数据集的原始熵
    baseEntropy = calcShannonEnt(dataSet)
    # 定义最佳信息增益
    bestInfoGain = 0.0
    # 定义最佳特征索引
    bestFeature = -1
    for i in range(numFeatures):
        # 取dataSet的第i行的第i列
        featList = [example[i] for example in dataSet]
        # 列表转集合去重
        uniqueVals = set(featList)
        # 定义新熵
        newEntropy = 0.0
        for value in uniqueVals:
            # 切分数据
            subDataSet = splitDataSet(dataSet, i, value)
            # 概率:子集占总集的元素数量百分比
            prob = len(subDataSet) / float(len(dataSet))
            # 求熵
            newEntropy += prob * calcShannonEnt(subDataSet)
        # 计算信息增益
        infoGain = baseEntropy - newEntropy
        # 比较信息增益,得到最大值
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
     # 返回最佳特征的索引值
    return bestFeature

5、得到每列特征不同值的次数,返回出现次数最多的标签

def majorityCnt(classList):
    """
    得到每列特征不同值的次数,返回出现次数最多的标签
    :param classList:
    :return:
    """
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] +=1
    # sorted()函数对所有可迭代的对象进行排序操作
    # operator.itemgetter() 指定可迭代对象中的一个元素来进行排序
    # reverse=True表示降序
    sortedClassConnt = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassConnt[0][0]

6、递归的构建决策树(主函数)

def createTree(dataSet, featureSet):
    """
    主函数:递归的构建决策树
    :param dataSet: 数据集
    :param feature: 特征列
    :return:
    """
    # 深复制
    feature = copy.deepcopy(featureSet)
    # 提取数据集最后一列数据
    classList = [example[-1] for example in dataSet]
    # 当第一个值在列表中出现的次数等于列表长度,表示类别完全相同,则停止继续划分
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 当数据集第一行只有一个元素,但是类别不相同,就挑选出现次数最多的作为返回值
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    # 最佳特征值划分的索引
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 得到最佳特征名
    bestFeatFeature = feature[bestFeat]
    # 使用字典类型存储树的信息
    myTree = {bestFeatFeature:{}}
    # 从特征列表中删除最佳特征的列
    del(feature[bestFeat])
    # 得到最佳特征值对应的数据集中的那一列数据组成列表
    featValues = [example[bestFeat] for example in dataSet]
    # 唯一化
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 复制,开一块新内存
        subFeature = feature[:]
        # 递归
        myTree[bestFeatFeature][value] = createTree(splitDataSet(dataSet, bestFeat, value), subFeature)
    return myTree

7、测试算法

def classify(inputTree, feature, testVec):
    """
    测试算法
    :param inputTree: 构建好的决策树
    :param feature: 特征列
    :param testVec: 测试实例
    :return:
    """
    # 找到树的第一个分类特征,或者说根节点
    firstStr = list(inputTree.keys())[0]
    # 从树中得到该分类特征的分支
    secondDict = inputTree[firstStr]
    # 得到对应的索引
    featIndex = feature.index(firstStr)
    for key in secondDict.keys():
        # 测试集的第0个特征值等于第key个子节点
        if testVec[featIndex] == key:
            # 判断该子节点是否为字典类型
            if type(secondDict[key]).__name__ == 'dict':
                # 子节点为字典类型,则从该分支树开始继续遍历分类
                classFeature = classify(secondDict[key], feature, testVec)
            else:
                # 子节点不是字典类型,则返回节点取值,就是分类结果
                classFeature = secondDict[key]
    return classFeature

8、存取决策树

def storeTree(inputTree, filename):
    """
    pickle模块序列化决策树对象,保存在磁盘中
    :param inputTree:
    :param filename:
    :return:
    """
    # 创建一个可以'写'的文本文件,二进制方式写入
    fw = open(filename, 'wb+')
    # 将决策树写入文件
    pickle.dump(inputTree, fw)
    # 关闭
    fw.close()

def grabTree(filename):
    """
    读取决策树
    :param filename:
    :return:
    """
    # 二进制形式读出数据
    fr = open(filename, 'rb+')
    return pickle.load(fr)

最终的决策树结构:{‘no surfacing’: {0: ‘no’, 1: {‘flippers’: {0: ‘no’, 1: ‘yes’}}}}
图形展示如下:
这里写图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值