PyTorch搭建ResNet模型(在CIFAR10数据集上准确率达到了90%)

PyTorch搭建ResNet模型

https://zhuanlan.zhihu.com/p/101332297

为了减少时间成本,本文只复现了ResNet-18模型,诸如ResNet-34、ResNet-50、ResNet-101、ResNet-152等更深层的神经网络模型,可以在ResNet-18的基础上修改而来。ResNet由于在顺序结构神经网络中引入了残差块(Residual Block),因此得名Residual Networks(ResNet)。

Residual Block


ResNet-18与ResNet-50


ResNet-34

# import packages
import torch
import torchvision
# Device configuration.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Transform configuration and data augmentation.
transform_train = torchvision.transforms.Compose([torchvision.transforms.Pad(4),
                                                 torchvision.transforms.RandomHorizontalFlip(),
                                                 torchvision.transforms.RandomCrop(32),
                                                 torchvision.transforms.ToTensor(),
                                                 torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
                                                torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
# Hyper-parameters
num_classes = 10
batch_size = 100
learning_rate = 0.001
num_epochs = 80
# Load downloaded dataset.
train_dataset = torchvision.datasets.CIFAR10('data/CIFAR/', download=False, train=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10('data/CIFAR/', download=False, train=False, transform=transform_test)
# Data Loader.
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# Define 3x3 convolution.
def conv3x3(in_channels, out_channels, stride=1):
    return torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
# Define Residual block
class ResidualBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = torch.nn.BatchNorm2d(out_channels)
        self.relu = torch.nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = torch.nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample :
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
# Define ResNet-18
class ResNet(torch.nn.Module):
    def __init__(self, block, layers, num_classes):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = torch.nn.BatchNorm2d(16)
        self.relu = torch.nn.ReLU(inplace=True)
        self.layer1 = self._make_layers(block, 16, layers[0])
        self.layer2 = self._make_layers(block, 32, layers[1], 2)
        self.layer3 = self._make_layers(block, 64, layers[2], 2)
        self.layer4 = self._make_layers(block, 128, layers[3], 2)
        self.avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
        self.fc = torch.nn.Linear(128, num_classes)
        
    def _make_layers(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = torch.nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                torch.nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return torch.nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out
# Make model.
model = ResNet(ResidualBlock, [2, 2, 2, 2], num_classes).to(device)
# Loss ans optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# For updating learning rate.
def update_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
# Train the model.
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass.
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    # Decay learning rate.
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)
Epoch [1/80], Step [100/500], Loss: 1.6278
Epoch [1/80], Step [200/500], Loss: 1.3368
Epoch [1/80], Step [300/500], Loss: 1.3774
Epoch [1/80], Step [400/500], Loss: 1.2487
Epoch [1/80], Step [500/500], Loss: 1.0083
Epoch [2/80], Step [100/500], Loss: 1.1344
Epoch [2/80], Step [200/500], Loss: 0.8391
Epoch [2/80], Step [300/500], Loss: 1.1451
Epoch [2/80], Step [400/500], Loss: 1.1581
Epoch [2/80], Step [500/500], Loss: 1.0138
Epoch [3/80], Step [100/500], Loss: 0.8204
Epoch [3/80], Step [200/500], Loss: 0.9306
Epoch [3/80], Step [300/500], Loss: 0.6666
Epoch [3/80], Step [400/500], Loss: 0.9254
Epoch [3/80], Step [500/500], Loss: 0.7068
Epoch [4/80], Step [100/500], Loss: 0.7309
Epoch [4/80], Step [200/500], Loss: 0.6603
Epoch [4/80], Step [300/500], Loss: 0.5715
Epoch [4/80], Step [400/500], Loss: 0.6693
Epoch [4/80], Step [500/500], Loss: 0.6240
Epoch [5/80], Step [100/500], Loss: 0.6171
Epoch [5/80], Step [200/500], Loss: 0.7757
Epoch [5/80], Step [300/500], Loss: 0.5394
Epoch [5/80], Step [400/500], Loss: 0.4437
Epoch [5/80], Step [500/500], Loss: 0.5371
Epoch [6/80], Step [100/500], Loss: 0.5737
Epoch [6/80], Step [200/500], Loss: 0.7505
Epoch [6/80], Step [300/500], Loss: 0.4102
Epoch [6/80], Step [400/500], Loss: 0.3542
Epoch [6/80], Step [500/500], Loss: 0.5393
Epoch [7/80], Step [100/500], Loss: 0.4987
Epoch [7/80], Step [200/500], Loss: 0.4006
Epoch [7/80], Step [300/500], Loss: 0.4238
Epoch [7/80], Step [400/500], Loss: 0.4722
Epoch [7/80], Step [500/500], Loss: 0.4706
Epoch [8/80], Step [100/500], Loss: 0.5829
Epoch [8/80], Step [200/500], Loss: 0.5226
Epoch [8/80], Step [300/500], Loss: 0.4381
Epoch [8/80], Step [400/500], Loss: 0.4344
Epoch [8/80], Step [500/500], Loss: 0.4641
Epoch [9/80], Step [100/500], Loss: 0.5033
Epoch [9/80], Step [200/500], Loss: 0.4500
Epoch [9/80], Step [300/500], Loss: 0.4019
Epoch [9/80], Step [400/500], Loss: 0.4249
Epoch [9/80], Step [500/500], Loss: 0.5130
Epoch [10/80], Step [100/500], Loss: 0.4057
Epoch [10/80], Step [200/500], Loss: 0.4189
Epoch [10/80], Step [300/500], Loss: 0.4459
Epoch [10/80], Step [400/500], Loss: 0.4157
Epoch [10/80], Step [500/500], Loss: 0.3352
Epoch [11/80], Step [100/500], Loss: 0.4696
Epoch [11/80], Step [200/500], Loss: 0.3871
Epoch [11/80], Step [300/500], Loss: 0.3810
Epoch [11/80], Step [400/500], Loss: 0.4613
Epoch [11/80], Step [500/500], Loss: 0.3651
Epoch [12/80], Step [100/500], Loss: 0.3487
Epoch [12/80], Step [200/500], Loss: 0.3225
Epoch [12/80], Step [300/500], Loss: 0.3127
Epoch [12/80], Step [400/500], Loss: 0.4051
Epoch [12/80], Step [500/500], Loss: 0.3588
Epoch [13/80], Step [100/500], Loss: 0.5568
Epoch [13/80], Step [200/500], Loss: 0.3759
Epoch [13/80], Step [300/500], Loss: 0.2941
Epoch [13/80], Step [400/500], Loss: 0.5200
Epoch [13/80], Step [500/500], Loss: 0.3995
Epoch [14/80], Step [100/500], Loss: 0.4985
Epoch [14/80], Step [200/500], Loss: 0.4564
Epoch [14/80], Step [300/500], Loss: 0.2351
Epoch [14/80], Step [400/500], Loss: 0.4535
Epoch [14/80], Step [500/500], Loss: 0.5108
Epoch [15/80], Step [100/500], Loss: 0.3881
Epoch [15/80], Step [200/500], Loss: 0.4429
Epoch [15/80], Step [300/500], Loss: 0.2841
Epoch [15/80], Step [400/500], Loss: 0.4210
Epoch [15/80], Step [500/500], Loss: 0.2653
Epoch [16/80], Step [100/500], Loss: 0.4307
Epoch [16/80], Step [200/500], Loss: 0.2401
Epoch [16/80], Step [300/500], Loss: 0.1996
Epoch [16/80], Step [400/500], Loss: 0.2240
Epoch [16/80], Step [500/500], Loss: 0.2821
Epoch [17/80], Step [100/500], Loss: 0.2849
Epoch [17/80], Step [200/500], Loss: 0.2965
Epoch [17/80], Step [300/500], Loss: 0.3777
Epoch [17/80], Step [400/500], Loss: 0.4469
Epoch [17/80], Step [500/500], Loss: 0.2752
Epoch [18/80], Step [100/500], Loss: 0.2665
Epoch [18/80], Step [200/500], Loss: 0.3726
Epoch [18/80], Step [300/500], Loss: 0.1999
Epoch [18/80], Step [400/500], Loss: 0.2555
Epoch [18/80], Step [500/500], Loss: 0.2895
Epoch [19/80], Step [100/500], Loss: 0.1635
Epoch [19/80], Step [200/500], Loss: 0.1796
Epoch [19/80], Step [300/500], Loss: 0.4037
Epoch [19/80], Step [400/500], Loss: 0.2623
Epoch [19/80], Step [500/500], Loss: 0.1818
Epoch [20/80], Step [100/500], Loss: 0.2265
Epoch [20/80], Step [200/500], Loss: 0.4131
Epoch [20/80], Step [300/500], Loss: 0.2777
Epoch [20/80], Step [400/500], Loss: 0.3146
Epoch [20/80], Step [500/500], Loss: 0.3028
Epoch [21/80], Step [100/500], Loss: 0.3265
Epoch [21/80], Step [200/500], Loss: 0.2229
Epoch [21/80], Step [300/500], Loss: 0.2388
Epoch [21/80], Step [400/500], Loss: 0.2601
Epoch [21/80], Step [500/500], Loss: 0.1227
Epoch [22/80], Step [100/500], Loss: 0.2175
Epoch [22/80], Step [200/500], Loss: 0.2641
Epoch [22/80], Step [300/500], Loss: 0.1847
Epoch [22/80], Step [400/500], Loss: 0.1926
Epoch [22/80], Step [500/500], Loss: 0.2075
Epoch [23/80], Step [100/500], Loss: 0.1859
Epoch [23/80], Step [200/500], Loss: 0.1570
Epoch [23/80], Step [300/500], Loss: 0.2750
Epoch [23/80], Step [400/500], Loss: 0.0908
Epoch [23/80], Step [500/500], Loss: 0.1936
Epoch [24/80], Step [100/500], Loss: 0.1485
Epoch [24/80], Step [200/500], Loss: 0.1572
Epoch [24/80], Step [300/500], Loss: 0.1881
Epoch [24/80], Step [400/500], Loss: 0.1262
Epoch [24/80], Step [500/500], Loss: 0.3006
Epoch [25/80], Step [100/500], Loss: 0.2768
Epoch [25/80], Step [200/500], Loss: 0.0902
Epoch [25/80], Step [300/500], Loss: 0.2313
Epoch [25/80], Step [400/500], Loss: 0.1361
Epoch [25/80], Step [500/500], Loss: 0.2736
Epoch [26/80], Step [100/500], Loss: 0.1499
Epoch [26/80], Step [200/500], Loss: 0.1687
Epoch [26/80], Step [300/500], Loss: 0.1190
Epoch [26/80], Step [400/500], Loss: 0.1117
Epoch [26/80], Step [500/500], Loss: 0.1268
Epoch [27/80], Step [100/500], Loss: 0.1518
Epoch [27/80], Step [200/500], Loss: 0.1603
Epoch [27/80], Step [300/500], Loss: 0.1415
Epoch [27/80], Step [400/500], Loss: 0.2641
Epoch [27/80], Step [500/500], Loss: 0.0748
Epoch [28/80], Step [100/500], Loss: 0.2301
Epoch [28/80], Step [200/500], Loss: 0.2718
Epoch [28/80], Step [300/500], Loss: 0.2650
Epoch [28/80], Step [400/500], Loss: 0.0754
Epoch [28/80], Step [500/500], Loss: 0.1454
Epoch [29/80], Step [100/500], Loss: 0.1373
Epoch [29/80], Step [200/500], Loss: 0.1285
Epoch [29/80], Step [300/500], Loss: 0.1345
Epoch [29/80], Step [400/500], Loss: 0.1153
Epoch [29/80], Step [500/500], Loss: 0.2338
Epoch [30/80], Step [100/500], Loss: 0.1643
Epoch [30/80], Step [200/500], Loss: 0.0779
Epoch [30/80], Step [300/500], Loss: 0.1455
Epoch [30/80], Step [400/500], Loss: 0.1288
Epoch [30/80], Step [500/500], Loss: 0.2127
Epoch [31/80], Step [100/500], Loss: 0.2214
Epoch [31/80], Step [200/500], Loss: 0.1338
Epoch [31/80], Step [300/500], Loss: 0.1166
Epoch [31/80], Step [400/500], Loss: 0.0748
Epoch [31/80], Step [500/500], Loss: 0.2321
Epoch [32/80], Step [100/500], Loss: 0.1146
Epoch [32/80], Step [200/500], Loss: 0.1730
Epoch [32/80], Step [300/500], Loss: 0.1165
Epoch [32/80], Step [400/500], Loss: 0.2201
Epoch [32/80], Step [500/500], Loss: 0.0860
Epoch [33/80], Step [100/500], Loss: 0.1171
Epoch [33/80], Step [200/500], Loss: 0.1427
Epoch [33/80], Step [300/500], Loss: 0.1329
Epoch [33/80], Step [400/500], Loss: 0.1102
Epoch [33/80], Step [500/500], Loss: 0.1330
Epoch [34/80], Step [100/500], Loss: 0.1335
Epoch [34/80], Step [200/500], Loss: 0.1465
Epoch [34/80], Step [300/500], Loss: 0.1598
Epoch [34/80], Step [400/500], Loss: 0.0849
Epoch [34/80], Step [500/500], Loss: 0.0847
Epoch [35/80], Step [100/500], Loss: 0.2173
Epoch [35/80], Step [200/500], Loss: 0.1172
Epoch [35/80], Step [300/500], Loss: 0.1516
Epoch [35/80], Step [400/500], Loss: 0.1212
Epoch [35/80], Step [500/500], Loss: 0.0644
Epoch [36/80], Step [100/500], Loss: 0.0651
Epoch [36/80], Step [200/500], Loss: 0.1346
Epoch [36/80], Step [300/500], Loss: 0.0986
Epoch [36/80], Step [400/500], Loss: 0.1141
Epoch [36/80], Step [500/500], Loss: 0.1344
Epoch [37/80], Step [100/500], Loss: 0.1834
Epoch [37/80], Step [200/500], Loss: 0.1162
Epoch [37/80], Step [300/500], Loss: 0.1637
Epoch [37/80], Step [400/500], Loss: 0.0949
Epoch [37/80], Step [500/500], Loss: 0.1504
Epoch [38/80], Step [100/500], Loss: 0.1251
Epoch [38/80], Step [200/500], Loss: 0.1133
Epoch [38/80], Step [300/500], Loss: 0.1080
Epoch [38/80], Step [400/500], Loss: 0.0686
Epoch [38/80], Step [500/500], Loss: 0.1099
Epoch [39/80], Step [100/500], Loss: 0.0616
Epoch [39/80], Step [200/500], Loss: 0.1919
Epoch [39/80], Step [300/500], Loss: 0.1736
Epoch [39/80], Step [400/500], Loss: 0.1276
Epoch [39/80], Step [500/500], Loss: 0.0810
Epoch [40/80], Step [100/500], Loss: 0.1305
Epoch [40/80], Step [200/500], Loss: 0.1893
Epoch [40/80], Step [300/500], Loss: 0.0975
Epoch [40/80], Step [400/500], Loss: 0.0918
Epoch [40/80], Step [500/500], Loss: 0.0549
Epoch [41/80], Step [100/500], Loss: 0.0390
Epoch [41/80], Step [200/500], Loss: 0.0826
Epoch [41/80], Step [300/500], Loss: 0.0812
Epoch [41/80], Step [400/500], Loss: 0.1012
Epoch [41/80], Step [500/500], Loss: 0.0991
Epoch [42/80], Step [100/500], Loss: 0.1419
Epoch [42/80], Step [200/500], Loss: 0.1208
Epoch [42/80], Step [300/500], Loss: 0.0862
Epoch [42/80], Step [400/500], Loss: 0.0817
Epoch [42/80], Step [500/500], Loss: 0.0749
Epoch [43/80], Step [100/500], Loss: 0.0834
Epoch [43/80], Step [200/500], Loss: 0.0713
Epoch [43/80], Step [300/500], Loss: 0.0794
Epoch [43/80], Step [400/500], Loss: 0.1317
Epoch [43/80], Step [500/500], Loss: 0.0561
Epoch [44/80], Step [100/500], Loss: 0.1528
Epoch [44/80], Step [200/500], Loss: 0.0989
Epoch [44/80], Step [300/500], Loss: 0.1040
Epoch [44/80], Step [400/500], Loss: 0.0633
Epoch [44/80], Step [500/500], Loss: 0.0580
Epoch [45/80], Step [100/500], Loss: 0.0817
Epoch [45/80], Step [200/500], Loss: 0.0723
Epoch [45/80], Step [300/500], Loss: 0.0435
Epoch [45/80], Step [400/500], Loss: 0.1233
Epoch [45/80], Step [500/500], Loss: 0.0652
Epoch [46/80], Step [100/500], Loss: 0.0720
Epoch [46/80], Step [200/500], Loss: 0.0727
Epoch [46/80], Step [300/500], Loss: 0.0731
Epoch [46/80], Step [400/500], Loss: 0.1015
Epoch [46/80], Step [500/500], Loss: 0.1100
Epoch [47/80], Step [100/500], Loss: 0.1373
Epoch [47/80], Step [200/500], Loss: 0.0711
Epoch [47/80], Step [300/500], Loss: 0.0612
Epoch [47/80], Step [400/500], Loss: 0.1126
Epoch [47/80], Step [500/500], Loss: 0.0481
Epoch [48/80], Step [100/500], Loss: 0.0284
Epoch [48/80], Step [200/500], Loss: 0.0472
Epoch [48/80], Step [300/500], Loss: 0.0857
Epoch [48/80], Step [400/500], Loss: 0.0402
Epoch [48/80], Step [500/500], Loss: 0.0856
Epoch [49/80], Step [100/500], Loss: 0.0678
Epoch [49/80], Step [200/500], Loss: 0.0627
Epoch [49/80], Step [300/500], Loss: 0.0598
Epoch [49/80], Step [400/500], Loss: 0.0643
Epoch [49/80], Step [500/500], Loss: 0.0256
Epoch [50/80], Step [100/500], Loss: 0.0903
Epoch [50/80], Step [200/500], Loss: 0.0344
Epoch [50/80], Step [300/500], Loss: 0.0522
Epoch [50/80], Step [400/500], Loss: 0.0502
Epoch [50/80], Step [500/500], Loss: 0.0344
Epoch [51/80], Step [100/500], Loss: 0.0654
Epoch [51/80], Step [200/500], Loss: 0.0376
Epoch [51/80], Step [300/500], Loss: 0.0347
Epoch [51/80], Step [400/500], Loss: 0.0391
Epoch [51/80], Step [500/500], Loss: 0.0918
Epoch [52/80], Step [100/500], Loss: 0.0627
Epoch [52/80], Step [200/500], Loss: 0.0631
Epoch [52/80], Step [300/500], Loss: 0.1437
Epoch [52/80], Step [400/500], Loss: 0.1198
Epoch [52/80], Step [500/500], Loss: 0.0595
Epoch [53/80], Step [100/500], Loss: 0.0501
Epoch [53/80], Step [200/500], Loss: 0.0416
Epoch [53/80], Step [300/500], Loss: 0.0831
Epoch [53/80], Step [400/500], Loss: 0.0350
Epoch [53/80], Step [500/500], Loss: 0.0257
Epoch [54/80], Step [100/500], Loss: 0.0628
Epoch [54/80], Step [200/500], Loss: 0.0533
Epoch [54/80], Step [300/500], Loss: 0.0226
Epoch [54/80], Step [400/500], Loss: 0.0379
Epoch [54/80], Step [500/500], Loss: 0.0605
Epoch [55/80], Step [100/500], Loss: 0.1083
Epoch [55/80], Step [200/500], Loss: 0.1897
Epoch [55/80], Step [300/500], Loss: 0.0573
Epoch [55/80], Step [400/500], Loss: 0.0658
Epoch [55/80], Step [500/500], Loss: 0.0485
Epoch [56/80], Step [100/500], Loss: 0.0430
Epoch [56/80], Step [200/500], Loss: 0.0346
Epoch [56/80], Step [300/500], Loss: 0.0393
Epoch [56/80], Step [400/500], Loss: 0.0278
Epoch [56/80], Step [500/500], Loss: 0.0634
Epoch [57/80], Step [100/500], Loss: 0.0588
Epoch [57/80], Step [200/500], Loss: 0.0300
Epoch [57/80], Step [300/500], Loss: 0.0223
Epoch [57/80], Step [400/500], Loss: 0.1497
Epoch [57/80], Step [500/500], Loss: 0.0777
Epoch [58/80], Step [100/500], Loss: 0.0809
Epoch [58/80], Step [200/500], Loss: 0.0934
Epoch [58/80], Step [300/500], Loss: 0.0982
Epoch [58/80], Step [400/500], Loss: 0.1587
Epoch [58/80], Step [500/500], Loss: 0.0417
Epoch [59/80], Step [100/500], Loss: 0.0371
Epoch [59/80], Step [200/500], Loss: 0.1052
Epoch [59/80], Step [300/500], Loss: 0.0455
Epoch [59/80], Step [400/500], Loss: 0.0274
Epoch [59/80], Step [500/500], Loss: 0.0616
Epoch [60/80], Step [100/500], Loss: 0.1352
Epoch [60/80], Step [200/500], Loss: 0.0750
Epoch [60/80], Step [300/500], Loss: 0.0705
Epoch [60/80], Step [400/500], Loss: 0.0296
Epoch [60/80], Step [500/500], Loss: 0.0380
Epoch [61/80], Step [100/500], Loss: 0.0438
Epoch [61/80], Step [200/500], Loss: 0.0599
Epoch [61/80], Step [300/500], Loss: 0.0504
Epoch [61/80], Step [400/500], Loss: 0.0469
Epoch [61/80], Step [500/500], Loss: 0.0534
Epoch [62/80], Step [100/500], Loss: 0.0200
Epoch [62/80], Step [200/500], Loss: 0.0518
Epoch [62/80], Step [300/500], Loss: 0.0660
Epoch [62/80], Step [400/500], Loss: 0.0473
Epoch [62/80], Step [500/500], Loss: 0.0292
Epoch [63/80], Step [100/500], Loss: 0.0576
Epoch [63/80], Step [200/500], Loss: 0.0643
Epoch [63/80], Step [300/500], Loss: 0.0856
Epoch [63/80], Step [400/500], Loss: 0.0674
Epoch [63/80], Step [500/500], Loss: 0.0834
Epoch [64/80], Step [100/500], Loss: 0.0638
Epoch [64/80], Step [200/500], Loss: 0.0802
Epoch [64/80], Step [300/500], Loss: 0.0700
Epoch [64/80], Step [400/500], Loss: 0.0195
Epoch [64/80], Step [500/500], Loss: 0.0488
Epoch [65/80], Step [100/500], Loss: 0.0358
Epoch [65/80], Step [200/500], Loss: 0.0692
Epoch [65/80], Step [300/500], Loss: 0.0298
Epoch [65/80], Step [400/500], Loss: 0.0233
Epoch [65/80], Step [500/500], Loss: 0.0875
Epoch [66/80], Step [100/500], Loss: 0.0298
Epoch [66/80], Step [200/500], Loss: 0.0509
Epoch [66/80], Step [300/500], Loss: 0.0227
Epoch [66/80], Step [400/500], Loss: 0.1122
Epoch [66/80], Step [500/500], Loss: 0.0954
Epoch [67/80], Step [100/500], Loss: 0.0623
Epoch [67/80], Step [200/500], Loss: 0.0213
Epoch [67/80], Step [300/500], Loss: 0.0553
Epoch [67/80], Step [400/500], Loss: 0.0296
Epoch [67/80], Step [500/500], Loss: 0.0715
Epoch [68/80], Step [100/500], Loss: 0.0543
Epoch [68/80], Step [200/500], Loss: 0.0407
Epoch [68/80], Step [300/500], Loss: 0.0370
Epoch [68/80], Step [400/500], Loss: 0.0279
Epoch [68/80], Step [500/500], Loss: 0.0512
Epoch [69/80], Step [100/500], Loss: 0.0297
Epoch [69/80], Step [200/500], Loss: 0.0583
Epoch [69/80], Step [300/500], Loss: 0.0760
Epoch [69/80], Step [400/500], Loss: 0.0403
Epoch [69/80], Step [500/500], Loss: 0.0189
Epoch [70/80], Step [100/500], Loss: 0.1321
Epoch [70/80], Step [200/500], Loss: 0.0988
Epoch [70/80], Step [300/500], Loss: 0.0440
Epoch [70/80], Step [400/500], Loss: 0.0250
Epoch [70/80], Step [500/500], Loss: 0.0671
Epoch [71/80], Step [100/500], Loss: 0.0293
Epoch [71/80], Step [200/500], Loss: 0.0672
Epoch [71/80], Step [300/500], Loss: 0.0317
Epoch [71/80], Step [400/500], Loss: 0.0436
Epoch [71/80], Step [500/500], Loss: 0.0260
Epoch [72/80], Step [100/500], Loss: 0.0429
Epoch [72/80], Step [200/500], Loss: 0.0222
Epoch [72/80], Step [300/500], Loss: 0.0480
Epoch [72/80], Step [400/500], Loss: 0.0367
Epoch [72/80], Step [500/500], Loss: 0.0134
Epoch [73/80], Step [100/500], Loss: 0.0628
Epoch [73/80], Step [200/500], Loss: 0.0403
Epoch [73/80], Step [300/500], Loss: 0.0436
Epoch [73/80], Step [400/500], Loss: 0.1032
Epoch [73/80], Step [500/500], Loss: 0.0663
Epoch [74/80], Step [100/500], Loss: 0.0192
Epoch [74/80], Step [200/500], Loss: 0.0254
Epoch [74/80], Step [300/500], Loss: 0.0436
Epoch [74/80], Step [400/500], Loss: 0.1073
Epoch [74/80], Step [500/500], Loss: 0.0539
Epoch [75/80], Step [100/500], Loss: 0.0437
Epoch [75/80], Step [200/500], Loss: 0.0813
Epoch [75/80], Step [300/500], Loss: 0.0821
Epoch [75/80], Step [400/500], Loss: 0.0847
Epoch [75/80], Step [500/500], Loss: 0.0428
Epoch [76/80], Step [100/500], Loss: 0.0912
Epoch [76/80], Step [200/500], Loss: 0.0295
Epoch [76/80], Step [300/500], Loss: 0.0700
Epoch [76/80], Step [400/500], Loss: 0.0480
Epoch [76/80], Step [500/500], Loss: 0.0358
Epoch [77/80], Step [100/500], Loss: 0.0178
Epoch [77/80], Step [200/500], Loss: 0.0154
Epoch [77/80], Step [300/500], Loss: 0.0662
Epoch [77/80], Step [400/500], Loss: 0.0258
Epoch [77/80], Step [500/500], Loss: 0.0811
Epoch [78/80], Step [100/500], Loss: 0.0542
Epoch [78/80], Step [200/500], Loss: 0.0643
Epoch [78/80], Step [300/500], Loss: 0.0575
Epoch [78/80], Step [400/500], Loss: 0.0371
Epoch [78/80], Step [500/500], Loss: 0.0512
Epoch [79/80], Step [100/500], Loss: 0.0240
Epoch [79/80], Step [200/500], Loss: 0.0133
Epoch [79/80], Step [300/500], Loss: 0.0532
Epoch [79/80], Step [400/500], Loss: 0.0760
Epoch [79/80], Step [500/500], Loss: 0.0356
Epoch [80/80], Step [100/500], Loss: 0.0728
Epoch [80/80], Step [200/500], Loss: 0.0553
Epoch [80/80], Step [300/500], Loss: 0.0228
Epoch [80/80], Step [400/500], Loss: 0.0324
Epoch [80/80], Step [500/500], Loss: 0.0701
# Test the model.
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
Accuracy of the model on the test images: 89.89 %
# Save the model
torch.save(model.state_dict(), 'ResNet.ckpt')

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: CIFAR(Canadian Institute for Advanced Research)是一个国际性的研究组织,致力于推动科学和技术的发展。它发布了一个被广泛应用于计算机视觉领域的数据集,称为CIFAR-10和CIFAR-100。 PyTorch是一个基于Python的开源机器学习库,主要用于深度学习任务。由于其简洁易用的接口和动态计算图的特性,PyTorch已成为深度学习研究人员和工程师的首选框架之一。 针对CIFAR数据集的分类任务,使用PyTorch可以实现较高的准确率。通过搭建合适的卷积神经网络(CNN)模型,并结合适当的损失函数和优化算法,可以在CIFAR-10数据集达到90%的准确率。对于更复杂的CIFAR-100数据集,由于其更多的类别和较小的训练样本数量,准确率可能稍低,但也可以达到较高水平。 然而,实现高准确率并不仅仅依赖于使用PyTorch这一框架。更重要的是设计和优化模型架构,选择合适的超参数,以及合理的数据增强和正则化手段。此外,还需要进行适当的训练和验证策略,如交叉验证、早停等,以确保模型的泛化能力。 总之,PyTorch是一个强大的工具,可以用于实现针对CIFAR数据集的分类任务。然而,准确率的实际表现还取决于模型设计与调优的质量和策略的合理性。 ### 回答2: CIFAR(Canadian Institute for Advanced Research)是一个著名的计算机视觉任务基准数据集,由加拿大高级研究院创立。它包含了来自10个类别的60000张32x32大小的彩色图片,其中50000张用于训练,10000张用于测试。 PyTorch 是一个广为使用的深度学习框架,以其易用性和动态计算图的特性而受到广泛赞誉。PyTorch支持多种深度学习模型的训练和推理,并提供了丰富的工具和函数,使得处理图像数据集如CIFAR的任务更加方便。 正确率是评估分类模型性能的一个指标,它表示模型在测试数据集上正确分类的比例。在使用PyTorch进行CIFAR数据集上的图像分类任务中,正确率可以通过训练好的模型在测试集上的预测结果与真实标签进行比对来计算。 在CIFAR数据集上,一般的深度学习模型(如卷积神经网络)在PyTorch中的实现,可以获得较高的正确率。具体的正确率取决于所选择的模型结构、训练过程的设置以及超参数的调整。一般而言,通过合理的网络设计、优化算法的选择和适当的超参数调优,可以在CIFAR数据集上获得超过90%的正确率。 在实践中,可以通过引用已经被广泛应用和验证的模型结构(如ResNet、VGG、DenseNet等),并结合合适的数据预处理和数据增强技巧,使用PyTorch进行CIFAR数据集的训练和测试。同时,使用一些优化技术如学习率调整、正则化、Dropout等,以提升模型性能。然后,通过交叉验证等方法来评估模型在测试集上的正确率,并根据评估结果进行模型调整和改进。 总之,CIFAR数据集PyTorch中可以获得较高的分类正确率,而具体的正确率则取决于所选模型的性能以及训练和优化过程的细节设置。 ### 回答3: CIFAR(Canadian Institute for Advanced Research)是一个研究机构,而PyTorch是一个深度学习框架。CIFAR数据集是一个常用的用于图像分类任务的数据集,它包含了10个不同类别的60000张RGB彩色图像,每个类别有6000张图像。 PyTorch是一个基于Python的科学计算库,它提供了一个用于构建深度学习模型的高级接口。PyTorch深度学习社区中非常受欢迎,因为它提供了灵活性和易用性,能够支持动态图和静态图的混合编程,使开发者能够更容易地构建和调整模型。 对于CIFAR数据集的图像分类任务,使用PyTorch可以很容易地构建一个深度学习模型PyTorch提供了丰富的预定义模型架构和训练工具,使得训练模型变得更加简单。通过使用PyTorch的高级接口,开发者可以通过几行代码创建一个神经网络模型,然后用数据集进行训练和优化。 关于CIFAR数据集PyTorch上的正确率,实际的性能取决于使用的模型架构、训练策略和超参数调整等因素。通常情况下,使用PyTorch进行CIFAR图像分类任务,可以获得较高的准确率。根据具体的模型和训练策略,可能可以达到80%以上的准确率。 总之,通过PyTorch可以方便地进行CIFAR数据集的图像分类任务,并能获得较高的准确率。但要达到更高的准确率,需要根据具体情况进行模型和训练策略的选择和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值