一键获取A股数据,配合大模型做投资分析

往期回顾

专业的金融问答大模型智能助手,例如通义点金,提供了简单便捷的使用体验。这类智能助手能够快速响应,帮助用户查询所需数据并进行即时分析。然而,它们的缺点在于,用户往往无法了解这些分析结论是基于哪些数据做出的。

往期文章:利用大模型通义点金直接解读财报

获取A股数据

需要自动化获取A股数据,选择通过代码方式是最便捷的。以下有几个获取股票数据和上市公司财报数据的API。

  • tushare:它可以帮助投资者获取实时数据、历史数据并进行深入的分析。它提供了简单易用的API,允许用户轻松地获取数据,也是使用pip install tushare就可以使用,不过这个api有分普通版本和pro专业版本,是有费用的。4

  • akshare:它是一个功能强大的库,提供了全球股票市场的数据。它支持中国A股、港股、美股、期货、基金等市场,并提供了丰富的数据接口。直接pip install akshare便可使用,并获取全球股票数据。

  • efinance:它是一个专门为金融量化分析而设计的Python库。它提供了丰富的量化策略和工具,可以帮助投资者进行技术分析、量化回测和风险管理。相比其他两个API,它不但没有费用,而且数据更多样化,比上面两个更适合做数据分析。

下面以efinance为例子,进行财报数据获取。既然是第三方库,首先安装efinance。

pip install efinance

这里建议使用Jupyter-notebook来验证代码,首先在代码中导入efinance,获取沪深市场的全部股票报告期信息,代码如下。

import efinance as ef
ef.stock.get_all_report_dates()
# 部分输出
报告日期       季报名称
0   2023-09-30  2023年 三季报
1   2023-06-30  2023年 半年报
2   2023-03-31  2023年 一季报
3   2022-12-31   2022年 年报
4   2022-09-30  2022年 三季报
5   2022-06-30  2022年 半年报
6   2022-03-31  2022年 一季报
7   2021-12-31   2021年 年报
8   2021-09-30  2021年 三季报
9   2021-06-30  2021年 半年报

现在来获取沪深市场股票最新季度的情况,参数输入上面查出来的日期,则获取对应的季报或年报,代码如下。

# 获取2023-06-30  2023年 半年报的数据
df_repo = ef.stock.get_all_company_performance("2023-06-30")
df_repo.head() # 输出前5列
# 输出
股票代码  股票简称                 公告日期          营业收入    营业收入同比增长  营业收入季度环比  \
0  603312  西典新能  2023-12-22 00:00:00  8.545619e+08   36.078627       NaN   
1  603325  博隆技术  2023-12-21 00:00:00  5.646180e+08         NaN       NaN   
2  688717  艾罗能源  2023-12-14 00:00:00  3.399058e+09  143.170902       NaN   
3  301578  辰奕智能  2023-12-11 00:00:00  3.145781e+08  -12.629026       NaN   
4  603004  鼎龙科技  2023-12-08 00:00:00  3.763705e+08   -1.405689       NaN   
            净利润     净利润同比增长  净利润季度环比    每股收益      每股净资产  净资产收益率      销售毛利率  \
0  8.696891e+07   21.569806      NaN  0.7200   4.364441   17.95  18.012664   
1  1.330955e+08         NaN      NaN  2.6619  19.927033   14.34  31.632989   
2  9.753225e+08  295.145838      NaN  8.1300  18.894273   55.07  40.724006   
3  4.160545e+07   22.551354      NaN  1.1600   9.584170   12.83  27.346789   
4  8.748705e+07   62.871716      NaN  0.5000   5.329813    9.76  37.961459   
   每股经营现金流量  
0  0.270694  
1  3.622982  
2  5.824029  
3  2.749235  
4  0.596904

再来查看股票的基本信息,通过上面的数据获取股票代码,然后用get_base_info()获取该股票的基本信息。

# 通过股票代码获取单只股票信息
# 提取第四条数据
stock_demo = df_repo.iloc[3]
print("股票代码: ", stock_demo["股票代码"], "股票简称:", stock_demo["股票简称"])
# 股票信息
print("==========详细股票信息==============")
print(ef.stock.get_base_info(stock_demo["股票代码"]))
# 输出
股票代码:  301578 股票简称: 辰奕智能
==========详细股票信息==============
股票代码            301578
股票名称              辰奕智能
净利润         64748619.5
总市值       2349120000.0
流通市值      556877297.44
所处行业              消费电子
市盈率()           27.21
市净率               2.63
ROE              19.26
毛利率           27.52882
净利率          13.242092
板块编号            BK1037
dtype: object

大模型协助分析

通过上述几行代码,已经把这个上市公司的财务情况显示出来,效果不错,而且可以免费使用,查询效率得到明显提高。不过这些专业术语,若不是专业认识,也不容易从中看出公司的发展情况。我尝试把这些数据都给到ChatGPT,让它帮忙分析。

问题1:

你是一个财经专家,通过以下数据,请用通俗语言讲述这个企业的经营情况。详细数据如下:

股票代码 301578

股票名称 辰奕智能

净利润 64748619.5

总市值 2349120000.0

流通市值 556877297.44

所处行业 消费电子

市盈率(动) 27.21

市净率 2.63

ROE 19.26

毛利率 27.52882

净利率 13.242092

板块编号 BK1037

AI回答

通过分析给出的数据,可以看出辰奕智能这个企业的经营情况如下:

首先,该企业本季度的营业收入为314578118.66元,与去年同期相比下降了12.629026%。这一数字显示该企业的销售额有所下降,这可能是由于市场竞争激烈、需求下降或者销售策略不当等原因导致的。

其次,该企业本季度的净利润为41605454.96元,同比增长了22.551354%。这一数据说明尽管销售额有所下降,但企业在成本控制、效率提升等方面有所作为,使得净利润实现了增长。这显示了企业的盈利能力。

此外,该企业的每股收益为1.16元,净资产收益率为12.83%,销售毛利率为27.346789%。这些数据进一步证明了企业的盈利能力。

从整体上看,辰奕智能这个企业在本季度的经营情况并不理想,营业收入有所下滑。但是,企业在成本控制和效率提升方面做得不错,净利润实现了增长。这显示了企业在面对挑战时的应变能力。如果企业能够进一步分析市场需求,调整销售策略,控制成本,提升产品或服务质量,有望在未来实现更好的业绩。

哇塞!是不是觉得很惊艳?😎这分析听起来就像是专家级的。而且,我们还能回溯历史数据,来验证大模型的预测能力是否与现实结果相符。整个过程不仅可控性更强,灵活性也更高,还有更多有趣的功能等你来发现。快来体验一下吧!

快速体验
进入网址,一键开启便可以运行代码。

投资者在做出投资决策前,应充分了解股票市场的风险,并考虑咨询专业的财务顾问。本文所提供的信息不作为任何投资决策的依据。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值