往期回顾
专业的金融问答大模型智能助手,例如通义点金,提供了简单便捷的使用体验。这类智能助手能够快速响应,帮助用户查询所需数据并进行即时分析。然而,它们的缺点在于,用户往往无法了解这些分析结论是基于哪些数据做出的。
往期文章:利用大模型通义点金直接解读财报
获取A股数据
需要自动化获取A股数据,选择通过代码方式是最便捷的。以下有几个获取股票数据和上市公司财报数据的API。
-
tushare:它可以帮助投资者获取实时数据、历史数据并进行深入的分析。它提供了简单易用的API,允许用户轻松地获取数据,也是使用pip install tushare就可以使用,不过这个api有分普通版本和pro专业版本,是有费用的。4
-
akshare:它是一个功能强大的库,提供了全球股票市场的数据。它支持中国A股、港股、美股、期货、基金等市场,并提供了丰富的数据接口。直接pip install akshare便可使用,并获取全球股票数据。
-
efinance:它是一个专门为金融量化分析而设计的Python库。它提供了丰富的量化策略和工具,可以帮助投资者进行技术分析、量化回测和风险管理。相比其他两个API,它不但没有费用,而且数据更多样化,比上面两个更适合做数据分析。
下面以efinance为例子,进行财报数据获取。既然是第三方库,首先安装efinance。
pip install efinance
这里建议使用Jupyter-notebook来验证代码,首先在代码中导入efinance,获取沪深市场的全部股票报告期信息,代码如下。
import efinance as ef
ef.stock.get_all_report_dates()
# 部分输出
报告日期 季报名称
0 2023-09-30 2023年 三季报
1 2023-06-30 2023年 半年报
2 2023-03-31 2023年 一季报
3 2022-12-31 2022年 年报
4 2022-09-30 2022年 三季报
5 2022-06-30 2022年 半年报
6 2022-03-31 2022年 一季报
7 2021-12-31 2021年 年报
8 2021-09-30 2021年 三季报
9 2021-06-30 2021年 半年报
现在来获取沪深市场股票最新季度的情况,参数输入上面查出来的日期,则获取对应的季报或年报,代码如下。
# 获取2023-06-30 2023年 半年报的数据
df_repo = ef.stock.get_all_company_performance("2023-06-30")
df_repo.head() # 输出前5列
# 输出
股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 \
0 603312 西典新能 2023-12-22 00:00:00 8.545619e+08 36.078627 NaN
1 603325 博隆技术 2023-12-21 00:00:00 5.646180e+08 NaN NaN
2 688717 艾罗能源 2023-12-14 00:00:00 3.399058e+09 143.170902 NaN
3 301578 辰奕智能 2023-12-11 00:00:00 3.145781e+08 -12.629026 NaN
4 603004 鼎龙科技 2023-12-08 00:00:00 3.763705e+08 -1.405689 NaN
净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 \
0 8.696891e+07 21.569806 NaN 0.7200 4.364441 17.95 18.012664
1 1.330955e+08 NaN NaN 2.6619 19.927033 14.34 31.632989
2 9.753225e+08 295.145838 NaN 8.1300 18.894273 55.07 40.724006
3 4.160545e+07 22.551354 NaN 1.1600 9.584170 12.83 27.346789
4 8.748705e+07 62.871716 NaN 0.5000 5.329813 9.76 37.961459
每股经营现金流量
0 0.270694
1 3.622982
2 5.824029
3 2.749235
4 0.596904
再来查看股票的基本信息,通过上面的数据获取股票代码,然后用get_base_info()获取该股票的基本信息。
# 通过股票代码获取单只股票信息
# 提取第四条数据
stock_demo = df_repo.iloc[3]
print("股票代码: ", stock_demo["股票代码"], "股票简称:", stock_demo["股票简称"])
# 股票信息
print("==========详细股票信息==============")
print(ef.stock.get_base_info(stock_demo["股票代码"]))
# 输出
股票代码: 301578 股票简称: 辰奕智能
==========详细股票信息==============
股票代码 301578
股票名称 辰奕智能
净利润 64748619.5
总市值 2349120000.0
流通市值 556877297.44
所处行业 消费电子
市盈率(动) 27.21
市净率 2.63
ROE 19.26
毛利率 27.52882
净利率 13.242092
板块编号 BK1037
dtype: object
大模型协助分析
通过上述几行代码,已经把这个上市公司的财务情况显示出来,效果不错,而且可以免费使用,查询效率得到明显提高。不过这些专业术语,若不是专业认识,也不容易从中看出公司的发展情况。我尝试把这些数据都给到ChatGPT,让它帮忙分析。
问题1:
你是一个财经专家,通过以下数据,请用通俗语言讲述这个企业的经营情况。详细数据如下:
股票代码 301578
股票名称 辰奕智能
净利润 64748619.5
总市值 2349120000.0
流通市值 556877297.44
所处行业 消费电子
市盈率(动) 27.21
市净率 2.63
ROE 19.26
毛利率 27.52882
净利率 13.242092
板块编号 BK1037
AI回答
通过分析给出的数据,可以看出辰奕智能这个企业的经营情况如下:
首先,该企业本季度的营业收入为314578118.66元,与去年同期相比下降了12.629026%。这一数字显示该企业的销售额有所下降,这可能是由于市场竞争激烈、需求下降或者销售策略不当等原因导致的。
其次,该企业本季度的净利润为41605454.96元,同比增长了22.551354%。这一数据说明尽管销售额有所下降,但企业在成本控制、效率提升等方面有所作为,使得净利润实现了增长。这显示了企业的盈利能力。
此外,该企业的每股收益为1.16元,净资产收益率为12.83%,销售毛利率为27.346789%。这些数据进一步证明了企业的盈利能力。
从整体上看,辰奕智能这个企业在本季度的经营情况并不理想,营业收入有所下滑。但是,企业在成本控制和效率提升方面做得不错,净利润实现了增长。这显示了企业在面对挑战时的应变能力。如果企业能够进一步分析市场需求,调整销售策略,控制成本,提升产品或服务质量,有望在未来实现更好的业绩。
哇塞!是不是觉得很惊艳?😎这分析听起来就像是专家级的。而且,我们还能回溯历史数据,来验证大模型的预测能力是否与现实结果相符。整个过程不仅可控性更强,灵活性也更高,还有更多有趣的功能等你来发现。快来体验一下吧!
快速体验
进入网址,一键开启便可以运行代码。
投资者在做出投资决策前,应充分了解股票市场的风险,并考虑咨询专业的财务顾问。本文所提供的信息不作为任何投资决策的依据。