矩阵基本知识

1,identity matrix

单位矩阵,除了正对角线上是1,其它地方都是0

2,square matrix

方阵,行数和列数都相等的矩阵

3,diagonal matrix

对角矩阵,只在正对角线上有值,其它地方为0

4,matrix multiplication矩阵相乘

[ a 11 a 12 a 13 a 21 a 22 a 23 ] [ b 11 b 12 b 21 b 22 b 31 b 32 ] = [ a 11 b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 ] \left[ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{matrix} \right] \left[ \begin{matrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{matrix} \right]= \left[ \begin{matrix} a_{11}b_{11} +a_{12}b_{21}+a_{13}b_{31}& a_{11}b_{12} +a_{12}b_{22}+a_{13}b_{32} \\ a_{21}b_{11} +a_{22}b_{21}+a_{23}b_{31}& a_{21}b_{12} +a_{22}b_{22}+a_{23}b_{32} \end{matrix} \right] [a11a21a12a22a13a23]b11b21b31b12b22b32=[a11b11+a12b21+a13b31a21b11+a22b21+a23b31a11b12+a12b22+a13b32a21b12+a22b22+a23b32]

5,the determinant行列式

在线性代数中,行列式就是一个值,它能从方阵计算而来。
方正A的行列式通常被记作det(A),det A,|A|。
在几何上,行列式是该方阵所代表的的线性变换的比例因子。

6,cross product(vector product)向量积

仅在三维空间中定义。
a ⃗ X b ⃗ = ∣ a ∣ ∗ ∣ b ∣ s i n ( θ ) n ⃗ \vec{a} X \vec{b} =|a|*|b|sin(\theta)\vec{n} a Xb =absin(θ)n
∣ a ∣ 和 ∣ b ∣ 分 别 为 向 量 a ⃗ 和 b ⃗ 的 长 度 , θ 为 a ⃗ 和 b ⃗ 的 夹 角 , |a|和|b|分别为向量\vec{a}和\vec{b}的长度,\theta为\vec{a}和\vec{b}的夹角, aba b θa b
n ⃗ 为 单 位 向 量 , 方 向 为 垂 直 于 a ⃗ 和 b ⃗ 的 平 面 , 且 在 这 两 条 向 量 的 右 边 。 \vec{n}为单位向量,方向为垂直于\vec{a}和\vec{b}的平面,且在这两条向量的右边。 n a b
在这里插入图片描述
由右手规则判断:
With your right-hand, point your index finger along vector a, and point your middle finger along vector b: the cross product goes in the direction of your thumb.
在这里插入图片描述

a ⃗ X b ⃗ \vec{a} X \vec{b} a Xb b ⃗ X a ⃗ \vec{b} X \vec{a} b Xa 长度相等,方向相反。

7,dot product(scalar product)点积

点积是标量,是一个数字。
a ⃗ . b ⃗ = ∣ a ∣ ∗ ∣ b ∣ c o s ( θ ) \vec{a}.\vec{b}=|a|*|b|cos(\theta) a .b =abcos(θ)
∣ a ∣ 和 ∣ b ∣ 分 别 为 向 量 a ⃗ 和 b ⃗ 的 长 度 , θ 为 a ⃗ 和 b ⃗ 的 夹 角 。 |a|和|b|分别为向量\vec{a}和\vec{b}的长度,\theta为\vec{a}和\vec{b}的夹角。 aba b θa b
在二维空间和多维空间,此计算都成立。

8,eigenvectors(特征向量)和eigenvalues(特征值)

给定一个矩阵A,如果经过 v ⃗ 这 个 线 性 变 换 后 , 得 到 的 新 向 量 仍 与 v ⃗ \vec{v}这个线性变换后,得到的新向量仍与\vec{v} v 线v 在同一条直线上,即:
A v ⃗ = λ v ⃗ A\vec{v}=\lambda\vec{v} Av =λv
则称 v ⃗ 为 矩 阵 A 的 特 征 向 量 , λ 为 矩 阵 A 的 特 征 值 \vec{v}为矩阵A的特征向量,\lambda为矩阵A的特征值 v AλA

方阵才有特征值和特征向量的概念,一个n阶方阵要么没有特征向量,要么有n个特征向量。

9,矩阵中常用的数学符号

9.1 A − 1 A^{-1} A1
叫法:The inverse matrix of the matrix A、逆矩阵、导数矩阵。
仅针对方阵而言,并且方阵的行列式不为0时才有逆矩阵。
定义:
如果A为方阵,且 A A − 1 = I , AA^{-1}=I, AA1=I A − 1 称 为 A 的 逆 矩 阵 ( 其 中 I 为 单 位 矩 阵 ) 。 A^{-1}称为A的逆矩阵(其中I为单位矩阵)。 A1AI

有如下一个2X2方阵:
A = [ a 11 a 12 a 21 a 22 ] A= \left[ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right] A=[a11a21a12a22]
则:
A − 1 = 1 a 11 a 22 − a 12 a 21 [ a 22 − a 12 − a 21 a 11 ] = 1 ∣ A ∣ [ a 22 − a 12 − a 21 a 11 ] A^{-1}=\frac{1}{a_{11}a_{22}-a_{12}a_{21}} \left[ \begin{matrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{matrix} \right]=\frac{1}{|A|} \left[ \begin{matrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{matrix} \right] A1=a11a22a12a211[a22a21a12a11]=A1[a22a21a12a11]
其中|A|为方阵A的行列式。

性质:
设C=AB(显然A和B为同纬度的方阵),
B = A − 1 A B = A − 1 C B=A^{-1}AB=A^{-1}C B=A1AB=A1C
A = A B B − 1 = C B − 1 A=ABB^{-1}=CB^{-1} A=ABB1=CB1
因此 C = A B = C B − 1 A − 1 C C=AB=CB^{-1}A^{-1}C C=AB=CB1A1C
因此 C B − 1 A − 1 = I CB^{-1}A^{-1}=I CB1A1=I(I为单位矩阵)
因此 B − 1 A − 1 = C − 1 = ( A B ) − 1 B^{-1}A^{-1}=C^{-1}=(AB)^{-1} B1A1=C1=(AB)1

9.2 A T A^T AT
矩阵A的转置矩阵,即将行和列互换。

9.3 A ∗ A^* A
叫法:complex conjugated matrix、复共轭矩阵
( A ∗ ) i , j = A i , j ˉ (A^*)_{i,j}=\bar{A_{i,j}} (A)i,j=Ai,jˉ,(其中 ( . ) i , j 为 矩 阵 第 i 行 第 j 列 的 元 素 , ( . ) ˉ 表 示 标 量 的 复 共 轭 。 (.)_{i,j}为矩阵第i行第j列的元素,\bar{(.)}表示标量的复共轭。 (.)i,jij(.)ˉ
则称 A ∗ A^* A为A的复共轭矩阵

9.3 A H ( 量 子 力 学 中 用 A † 表 示 ) A^H(量子力学中用A^\dag 表示) AH(A)
叫法:Transposed and complex conjugated matrix、共轭转置、伴随矩阵
( A ∗ ) i , j = A j , i ˉ (A^*)_{i,j}=\bar{A_{j,i}} (A)i,j=Aj,iˉ,(其中 ( . ) i , j 为 矩 阵 第 i 行 第 j 列 的 元 素 , ( . ) ˉ 表 示 标 量 的 复 共 轭 。 (.)_{i,j}为矩阵第i行第j列的元素,\bar{(.)}表示标量的复共轭。 (.)i,jij(.)ˉ
也写作:
( A ∗ ) = ( A ˉ ) T = A T ˉ (A^*)=(\bar{A})^T=\bar{A^T} (A)=(Aˉ)T=ATˉ
则称 A ∗ A^* A为A的共轭转置矩阵

9.4 A + A^+ A+
叫法:The pseudo inverse matrix of the matrix A、伪逆(广义的逆矩阵)。
如果没有特殊说明,矩阵的伪逆就是指摩尔-彭若斯广义逆。
在这里插入图片描述

10,矩阵的秩(matrix rank)

定义1:
对于mXn的矩阵,假设m个行向量中线性无关的向量个数是m1,n个列向量中线性无关的向量个数是n1,则min{m1, n1}为矩阵的秩。

定义2:
将矩阵化成行阶梯矩阵的形式,所有非零行的个数就是矩阵的秩。

如果矩阵所有的行向量和列向量都分别线性无关,则称这样的矩阵满秩。可逆矩阵与满秩矩阵等价。不可逆矩阵(奇异矩阵)与降秩矩阵等价。

性质:一个矩阵的秩与其转置矩阵的秩相等。

11,向量空间

n维向量的全体构成的集合 R n R^n Rn称为n维向量空间。
定义:如果V是n维向量的集合,V非空,且V对向量的加法和乘数封闭,则称集合V为向量空间。

12,矩阵的值域和零空间

矩阵A值域(用列空间表示):
Range(A)= 矩阵A的列向量的线性组合
= 矩阵A的列向量张成的空间
= 所有能被表示成Ax的向量(x为系数矩阵)

矩阵A的零空间:
Null(A)= 所有Ax = 0的解
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值