3D【10】网格优化:Laplacian Mesh Optimization

本文介绍了拉普拉斯网格优化和平滑在3D网格处理中的应用,探讨了基本概念、优化求解方法以及约束顶点的权值选择。通过实验表明,权值类型对3D人脸几何形状的影响显著,而利用线性方程求解的平滑方法优于直接坐标平滑,能更好地控制平滑程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉普拉斯网格优化与平滑是网格处理的经典算法,其一些基本概念可以作为神经网络预测3D mesh的一些约束,如平滑。我们先来看看一些基本概念。

基本概念

首先,我们用 G=(V,E) G = ( V , E ) 来表示一个网格。
其中 V=[vT1,vT

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值