斐波那契数列时间复杂性的近似证明和精确证明

斐波那契数列可以派生出很多应用,其中,我们知道它的时间复杂性是指数级的,现在就来粗略地证明一下:

斐波那契数列递推式:

F(n)=F(n-1)+F(n-2)

F(1)=F(2)=1

粗略证明可以利用Decision_Tree,为了更直观,我引用另一个恒等函数 f(x)=0 ;x=1,2,3,4,5,............

所以斐波那契数列递推式变形如下:

F(n)=F(n-1)+F(n-2)+f(n)

F(1)=F(2)=1

画出Decision_Tree

//			F(n)=    f(n)
//				  /		  \
//			f(n-1)		   f(n-2)
//		   /       \		/	\
//	  f(n-2)	 f(n-3)	f(n-3	f(n-4)
//		.			.	  .		  . 
//	   .			 .	 .		   f(2)
//	  /	   \						\
//	f(1)  f(2)						 1
//	/ \		/\
// 1   1   1  1

因为f(n)恒等于0,所以F(n)等于叶子结点的总和乘以Theta(1).最长链路是最左子树,最短链路是最右子树。

所以有:2^(n/2)<F(n)<2^n,即F(n)=theta(2^n).

精确证明:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Raise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值