目录
椒盐噪声
椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声是指两种噪声,一种是盐噪声(salt noise)盐=白色(255),另一种是胡椒噪声(pepper noise),椒=黑色(0)。前者是高灰度噪声,后者属于低灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。对于彩色图像,也有可能表现为在单个像素BGR三个通道随机出现的255或0。椒盐噪声往往由图像切割引起,去除脉冲干扰及椒盐噪声最常用的算法是中值滤波。
为图像添加椒盐噪声
Opencv提供了randu()函数生成单个均匀分布的随机数或随机数组。其函数原型为:
void randu(InputOutputArray dst,InputArray low,InputArray high);
//参数说明:
dst: //输出随机数组; 必须预先分配内存
low: //包含生成的随机数的下边界
high: //包含生成的随机数的上边界
使用randu()函数给图像添加椒盐噪声的代码如下,pn是噪声密度(即包括噪声值的图像区域的百分比)。因此,大约有 p n × n u m e l ( f ) pn\times numel(f) pn×numel(f)个像素受到影响。默认的噪声密度为0.05。
void addSaltAndPepperNoise(InputArray srcImage, OutputArray dstImage, double pn=0.05)
{
Mat srcMat = srcImage.getMat();
srcImage.copyTo(dstImage);
Mat dstMat = dstImage.getMat();
//图像通道判定
if (srcMat.channels() == 1)
{
Mat_<double> randux(srcMat.rows, srcMat.cols, CV_64F);
randu(randux, Scalar_<double>(0.0), Scalar_<double>(1.0));
for(int i = 0; i < srcMat.rows; i++)
{
for(int j = 0; j < srcMat.cols; j++)
{
if(randux.at<double>(i, j) < pn / 2)
{
dstMat.at<uchar>(i, j) = 0;
}
else if((randux.at<double>(i, j) > pn / 2) & (randux.at<double>(i, j) < pn))
{
dstMat.at<uchar>(i, j) = 255;
}
}
}
}
else if(srcMat.channels() == 3)
{
Mat randux(srcMat.rows, srcMat.cols, CV_64FC3);
randu(randux, Scalar(0.0, 0.0, 0.0), Scalar(1.0, 1.0, 1.0));
vector<Mat> dstchns;
split(dstMat, dstchns);
vector<Mat_<double>> xchns;
split(randux, xchns);
for(int k = 0; k < dstMat.channels(); k++)
{
for(int i = 0; i < dstMat.rows; i++)
{
for(int j = 0; j < dstMat.cols; j++)
{
if(xchns[k].at<double>(i, j) < pn / 2)
{
dstchns[k].at<uchar>(i, j) = 0;
}
else if((xchns[k].at<double>(i, j) > pn / 2) & (xchns[k].at<double>(i, j) < pn))
{
dstchns[k].at<uchar>(i, j) = 255;
}
}
}
}
merge(dstchns, dstMat);
}
}
int main()
{
Mat srcImage = imread("lena.bmp", CV_LOAD_IMAGE_UNCHANGED);
Mat noiseImage;
addSaltAndPepperNoise(srcImage, noiseImage, 0.05);
namedWindow("噪声图像");
imshow ("噪声图像", noiseImage);
waitKey(0);
return 0;
}
添加椒盐噪声后的图像为
高斯噪声
所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类加性噪声。
产生原因:
1)图像传感器在拍摄时不够明亮、亮度不够均匀;
2)电路各元器件自身噪声和相互影响;
3)图像传感器长期工作,温度过高。
normal_distribution
我们可以使用C++ random库中的normal_distribution来产生正态分布随机数来添加高斯噪声。代码为:
void addGaussianNoise(InputArray _srcImage, OutputArray _dstImage, double mu = 0, double sigma = 0.1)
{
Mat srcImage = _srcImage.getMat();
_srcImage.copyTo (_dstImage);
Mat _srcMat;
int type = CV_MAKETYPE(CV_64F, srcImage.channels());
srcImage.convertTo (_srcMat, type, 1.0 / 255);
Mat dstImage = _dstImage.getMat();
int channels = srcImage.channels();
int nRows = srcImage.rows;
int nCols = srcImage.cols * channels;
default_random_engine e;
normal_distribution<double> n(mu, sigma);
// 判断图像的连续性
if(srcImage.isContinuous())
{
nCols *= nRows;
nRows = 1;
}
for(int i = 0; i < nRows; ++i)
{
for(int j = 0; j < nCols; ++j)
{
// 添加高斯噪声
double val = _srcMat.ptr<double>(i)[j] + n(e);
dstImage.ptr<uchar>(i)[j] = saturate_cast<uchar>(val * 255);
}
}
}
Box–Muller变换
Box-Muller变换是通过服从均匀分布的随机变量,来构建服从高斯分布的随机变量的一种方法。基于这种变换,我们便可以得到一个从均匀分布中得到正态分布采样的算法。
定理:如果 U 1 U_1 U1和 U 2 U_2 U2是两个独立且服从(0,1)均匀分布的随机变量,则
X = − 2 ln U 1 cos ( 2 π U 2 ) X=\sqrt{-2 \ln U_1 }\cos(2\pi U_2) X=−2lnU1cos(2πU2) Y = − 2 ln U 1 sin ( 2 π U 2 ) Y=\sqrt{-2 \ln U_1 }\sin(2\pi U_2) Y=−2lnU