阿里云 DataWorks面试题集锦及参考答案

目录

简述阿里云 DataWorks 的核心功能模块及其在企业数据治理中的作用

简述 DataWorks 的核心功能模块及其应用场景

解释 DataWorks 中工作空间、项目、业务流程的三层逻辑关系

解释 DataWorks 中的 “节点”、“工作流” 和 “依赖关系” 设计

解释 DataWorks 中 “周期任务” 与 “手动任务” 的适用场景

解释 DataWorks 中 “冒烟测试” 的作用及操作步骤

数据集成模块支持哪些同步模式?增量同步的实现原理是什么?

数据地图的核心功能及数据血缘分析的价值是什么?

数据质量模块的校验规则类型及报警机制配置是怎样的?

数据服务模块的 API 生成流程与调用鉴权方式是什么?

DataWorks 如何实现湖仓一体架构支持

工作流调度引擎的底层实现原理是什么

数据开发(DataStudio)与数据分析模块的功能边界是什么

MaxCompute 与 DataWorks 的集成优势有哪些

DataWorks 支持哪些数据引擎?列举 5 种并说明适用场景

如何在 DataWorks 中配置 MySQL 数据源?关键步骤有哪些?

DataWorks 的数据集成支持哪些同步模式?如何选择离线与实时同步?

如何在 DataWorks 中实现跨数据源的数据同步?举例说明。

使用 DataStudio 开发 SQL 任务时,如何优化大表 Join 性能?

设计一个每日增量同步 MySQL 到 MaxCompute 的流程,并说明关键配置。

如何通过 DataWorks 实现数据清洗(去重、空值处理)?​

使用 DataWorks 实现实时数据接入 Kafka 的流程是怎样的?​

如何通过 DataWorks 调用外部 API 并存储响应结果?​

如何实现 Hive 表与 MaxCompute 表的数据互通?​

在 DataWorks 中如何管理 UDF 函数?​

设计一个自动归档历史数据的任务链​

如何通过 DataWorks 实现表生命周期管理?​

数据血缘分析在 DataWorks 中的实现方式与价值是什么?​

如何监控数据任务的资源消耗(CPU / 内存)?​

描述 DataWorks 的元数据管理机制​

如何处理任务因上游数据延迟导致的失败​

如何配置数据表的敏感字段脱敏规则​

解释 DataWorks 的 “数据标准” 功能及其落地实践​

如何批量修改任务的调度周期​

如何通过日志排查同步任务的数据丢失问题?​

如何实现跨工作空间的数据资产迁移?​

DataWorks 的 “数据保护伞” 功能如何防止数据泄露?​

如何通过 DataWorks 实现数据冷热分层存储?​

解释 DataWorks 中 “基线管理” 的作用及配置方法​

如何通过 OpenAPI 集成 DataWorks 到企业自有系统​

设计一个电商大促期间的实时数据大屏方案(含数据采集、计算、展示)​

如何优化一个运行缓慢的每日全量同步任务​

处理历史数据回溯时,如何避免资源冲突​

如何通过 DataWorks 实现用户行为日志的实时分析?​

设计一个支持动态分区的数据写入方案​

如何解决因小文件过多导致的查询性能下降?​

在 DataWorks 中实现机器学习模型的训练与部署流程是怎样的?​

如何设计一个高可用的数据同步容灾方案?​

解释 DataWorks 在湖仓一体架构中的角色​

如何通过 DataWorks 实现敏感数据的定时自动删除​

设计一个支持多版本回溯的数据表结构​

如何利用 DataWorks 实现 AB 测试的数据统计​

处理数据倾斜的常见方法及在 DataWorks 中的实践有哪些​

如何通过 DataWorks 实现实时数据与离线数据的关联分析?​

在 DataWorks 中实现行级数据权限控制的方案是什么?​

设计一个包含条件分支的复杂工作流(如成功执行 A,失败执行 B)​


简述阿里云 DataWorks 的核心功能模块及其在企业数据治理中的作用

  • 数据集成:能实现各种数据源之间的数据实时或批量同步,支持多种异构数据源,
### 阿里云 DataWorks 中使用 Spark 进行数据分析或处理 在阿里云 DataWorks 平台上,Spark 是一种强大的分布式计算框架,适用于大规模数据的批处理和流处理场景。以下是关于如何在 DataWorks 中配置并运行 Spark 作业的具体说明: #### 1. 创建 Spark 工程 通过 DataWorks 的项目管理功能创建一个新的工程,并选择支持 Spark 计算引擎的工作空间。这一步骤确保后续开发环境能够调用 MaxCompute 提供的 Spark 能力[^3]。 #### 2. 编写 Spark SQL 或 Scala/Pyspark 代码 DataWorks 支持多种编程方式来编写 Spark 应用程序,包括但不限于: - **Spark SQL**: 可用于结构化查询操作。 - **Scala 和 PySpark**: 更灵活的方式,适合复杂逻辑处理。 以下是一个简单的 Spark SQL 查询示例,展示如何读取表中的数据并执行聚合运算: ```sql SELECT category, COUNT(*) as total_count FROM sales_data GROUP BY category; ``` 如果需要更复杂的自定义函数,则可以采用 Scala 编写的 Pyspark 示例如下所示: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().appName("Example").getOrCreate() val data = spark.read.format("csv").option("header", "true").load("path/to/data") data.createOrReplaceTempView("sales_view") val result = spark.sql("SELECT category, SUM(amount) FROM sales_view GROUP BY category") result.show() ``` #### 3. 设置依赖关系与调度参数 为了使任务自动化,在节点属性设置界指定上游依赖项以及触发条件;同时调整资源配额如 CPU 核数、内存大小等以满足实际需求[^1]。 #### 4. 执行调试及优化性能 完成上述准备工作之后即可提交至集群运行测试版本。期间注意观察日志输出以便及时发现潜在错误或者瓶颈所在位置进而采取相应措施加以改进[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值