全球著名大学计算机视觉相关实验室

本文汇总了全球范围内专注于计算机视觉领域的研究团队信息,覆盖澳大利亚、奥地利、加拿大、中国等多个国家和地区,介绍了各研究机构的主要研究方向及实验室名称。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

翻译自http://peipa.essex.ac.uk/info/groups.html,注意:米国的大学放在最后

Australia


Austria


Bangladesh


Belarus


Belgium


Brazil


Canada


China


Croatia


Cuba


Czech Republic


Denmark

See also the list of Nordic groups in computer vision.


Finland


France


Germany


Greece


Hungary


Israel


Italy


India


Japan


Korea

See also the Korean research groups in Visual Information Processing.


Mexico


The Netherlands


New Zealand


Norway

See also the  list of Nordic groups  in computer vision.


Pakistan

  • International Islamic University, Islamabad
    ms5_iiui


Portugal


Russia


Peru


Republic of Ireland


South Africa


Spain


Sweden

See also the  list of Nordic groups  in computer vision.


Switzerland


Taiwan


Turkey


United Kingdom


United States of America


### 计算机视觉数据集概述 #### 定义 计算机视觉数据集是指用于训练、验证和测试计算机视觉模型的一系列图像或视频集合。这些数据集通常包含了标注信息,如边界框、类别标签或其他元数据,以便于算法能够理解和学习特定的任务。 #### 类型 常见的计算机视觉数据集可以根据其应用场景分为几类: - **物体检测数据集**:这类数据集中每张图片都带有标记好的目标位置及其对应的类别名称。例如MIT cbcl中的行人数据集就属于此类[^4]。 - **分类数据集**:仅需区分不同种类的对象而不必精确指出它们的位置。ImageNet是一个著名的例子,在这里数百万幅照片被分配给成千上万种不同的物种或物品类别[^1]。 - **分割数据集**:不仅要求识别出各个独立的目标还要描绘出每一个像素所属的部分。PASCAL VOC提供了这样的功能来帮助研究者们更好地理解复杂场景下的细粒度结构。 - **姿态估计/动作识别数据集**:专注于捕捉人体关节的关键点或者是连续帧之间发生的动态变化过程。MPII Human Pose Dataset就是专为此目的设计的一个大型公开可用资源。 #### 用途 利用上述提到的各种类型的计算机视觉数据集可以实现多种多样的任务,包括但不限于: - 开发新的特征提取方法; - 测试现有算法的有效性和鲁棒性; - 探索未知领域内的潜在模式并推动理论创新; - 构建实际产品原型以解决现实世界中存在的挑战。 #### 来源 获取高质量的计算机视觉数据集有多个途径: - **学术机构发布的标准评测平台**:像COCO(Common Objects in Context)、VOC等都是由知名大学实验室维护更新而成的标准评价体系的一部分。 - **在线竞赛网站提供的比赛专用素材包**:Kaggle作为全球最大的数据分析社区之一经常举办各类主题活动,并向参赛选手开放独家定制的数据文件下载权限[^2]。 - **搜索引擎集成的服务接口**:Google Dataset Search允许用户通过简单的关键词匹配快速定位到散布在全球各地Web服务器上的海量原始记录条目。 - **个人开发者分享的小规模实验样本**:GitHub Pages上面有许多热心网友上传了自己的项目成果连同配套使用的少量实例供他人参考借鉴。 ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator(rescale=1./255) train_generator = datagen.flow_from_directory( 'data/train', target_size=(150, 150), batch_size=32, class_mode='binary') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liqiming100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值