警告:
此题有毒
思路
首先我以为哪些面有重新来一次的机会对答案会有影响
后来发现没有
其实就是多一次扔色子的机会而已。
令sum=所有a[i]的和。
扔一次:sum/n
假如扔一次色子又可以再扔一次,则概率:
sum/n+sum/n∗m/n
假如又可以再扔一次:
sum/n+sum/n∗m/n+sum/n∗(m/n)2
运气好再扔:
sum/n+sum/n∗m/n+sum/n∗(m/n)2+sum/n∗(m/n)3
人品好炸了:
sum/n∗(1+p+p2+p3+p4+...+pk)
;k是正无穷,p=m/n。
令
A=1+q+q2+q3+q4+...+qk
然后
B=A∗q=q+q2+q3+...+qk+1
那么
B−A=qk+1−1
即:
(q−1)∗A=qk+1−1
那么:
A=(qk+1−1)/(q−1)
如果sum=0则答案是0,如果m=n可以扔无限次输出inf
因为q=m/n,所以q<1,所以
qk+1−1=−1
,所以A=1/(1-q)即ans=sum/(n-m);
代码
#include<iostream>
#include<cstdio>
#include<climits>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
int read(){
char ch=' ';int w=1,q=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')q=q*10+ch-'0',ch=getchar();
return w*q;
}
int a[205];
int n,m,sum;double ans;
int main()
{
int i,j,x;
while(scanf("%d",&n)!=EOF){
sum=0;
for(i=1;i<=n;i++){x=read();sum+=x;}
m=read();for(i=1;i<=m;i++)x=read();
if(sum==0){printf("0.00\n");continue;}
if(n==m){printf("inf\n");continue;}
ans=sum*1.0/(n-m)*1.0;
printf("%.2lf\n",ans);
}
return 0;
}