组合数的各种性质和定理

从m个物品里选出n个的方案数,记作 Cnm C m n ,即为组合数
组合数有很多很多的性质和定理。。。
注意由于本人沉迷玩梗无法自拔,如果看见您看不懂的梗请随意跳过。

组合数通项公式

Cnm=m!n!(mn)! C m n = m ! n ! ∗ ( m − n ) !

证明:现在我们从m个不同的数里选出n个数组成一个排列,第一个位子上的数有m种取法,第二个位子上的有m-1种,第三个位子上有m-2种。。。共有 m!(mn)! m ! ( m − n ) !
然而,我们对于顺序没有要求,假设取出了n个数,第一个位子上有n种放法,第二个位子上有n-1种。。。所以我们刚才得到的哪个东西还要除一个 n! n !

组合数递推公式

Cnm=Cnm1+Cn1m1 C m n = C m − 1 n + C m − 1 n − 1

证明:从m个不同的数中取n个,第m个数如果取的话有 Cn1m1 C m − 1 n − 1 种取法,如果不取则有 Cnm1 C m − 1 n 种。
如果您是组合数新手,请牢记以上两个公式

性质1

Cnm=Cmnm C m n = C m m − n

证明:显然从m个物品里选n个和从m个物品里选m-n个丢掉的方案数是一样的。

性质2

Crm+r+1=i=0rCim+i C m + r + 1 r = ∑ i = 0 r C m + i i

证明:用组合数的递推公式。
首先 C0m=C0m+1=1 C m 0 = C m + 1 0 = 1
C0m+C1m+1+C2m+2+...+Crm+r C m 0 + C m + 1 1 + C m + 2 2 + . . . + C m + r r =
C1m+C1m+1+C2m+2+...+Crm+r C m 1 + C m + 1 1 + C m + 2 2 + . . . + C m + r r =
C1m+2+C2m+2+...+Crm+r C m + 2 1 + C m + 2 2 + . . . + C m + r r =
Crm+r+1 C m + r + 1 r

性质3

CnmCrn=CrmCnrmr C m n ∗ C n r = C m r ∗ C m − r n − r

证明:用组合数的通项公式
CnmCrn= C m n ∗ C n r =
m!n!(mn)!n!r!(nr)!= m ! n ! ( m − n ) ! ∗ n ! r ! ( n − r ) ! =
m!r!(mr)!(mr)!(mn)!(nr)!= m ! r ! ( m − r ) ! ∗ ( m − r ) ! ( m − n ) ! ( n − r ) ! =
CrmCnrmr C m r ∗ C m − r n − r

性质4(二项式定理)

i=0mCim=2m ∑ i = 0 m C m i = 2 m

证明:显然 Cim C m i 代表一个m位二进制数有i个0的情况下的数量,那么这个和就是m位二进制数的数量了。
推广一下这个二项式定理:
i=0mCimxi=(x+1)m ∑ i = 0 m C m i ∗ x i = ( x + 1 ) m

这个又怎么证明呢?先把 (x+1)m ( x + 1 ) m 写成 (x+1)(x+1)(x+1)... ( x + 1 ) ( x + 1 ) ( x + 1 ) . . . 的格式,然后每一项很精妙啊,比如说i次方项,选的 i i x是从哪个括号里来呢?有 Cim C m i 种方案吧,所以 xi x i 项的系数是 Cim C m i
这就是杨辉三角的应用(可以自行百度)

性质5

C0mC1m+C2m...±Cmm=0 C m 0 − C m 1 + C m 2 − . . . ± C m m = 0

证明:假如m是奇数的花,由性质1可知正确。
假如m是偶数的花,这个里面的花,用一下递推公式,然后显然 C0m1=C0m=1 C m − 1 0 = C m 0 = 1 并且 Cm1m1=Cmm=1 C m − 1 m − 1 = C m m = 1 ,则:
C0mC1m+C2m...+Cmm= C m 0 − C m 1 + C m 2 − . . . + C m m =
C0m1C0m1C1m1+C1m1+C2m1...+Cm1m1=0 C m − 1 0 − C m − 1 0 − C m − 1 1 + C m − 1 1 + C m − 1 2 − . . . + C m − 1 m − 1 = 0

性质6

C0m+C2m+C4m...=C1m+C3m+C5m+...=2m1 C m 0 + C m 2 + C m 4 . . . = C m 1 + C m 3 + C m 5 + . . . = 2 m − 1

证明:这个根据性质4和性质5可知正确。

性质7

Crm+n=C0mCrn+C1mCr1n++CrmC0n C m + n r = C m 0 ∗ C n r + C m 1 ∗ C n r − 1 + … + C m r ∗ C n 0

证明:很简单,考虑我选出的r个物品在前m个物品有几个,在后n个物品里有几个即可。
特别的:
Cnm+n=C0mC0n+C1mC1n++CmmCmn C m + n n = C m 0 ∗ C n 0 + C m 1 ∗ C n 1 + … + C m m ∗ C n m

这个是根据性质1变形得到的。

性质8

nCnm=mCn1m1 n ∗ C m n = m ∗ C m − 1 n − 1

证明:运用通项公式
nCnm= n ∗ C m n =
nm!n!(mn)!= n ∗ m ! n ! ( m − n ) ! =
m!(n1)!(mn)!= m ! ( n − 1 ) ! ( m − n ) ! =
m(m1)!(n1)!(mn)!=mCn1m1 m ∗ ( m − 1 ) ! ( n − 1 ) ! ( m − n ) ! = m ∗ C m − 1 n − 1

性质9

i=1nCini=n2n1 ∑ i = 1 n C n i ∗ i = n ∗ 2 n − 1

证明:用通项公式
ni=1Cini=n2n1= ∑ i = 1 n C n i ∗ i = n ∗ 2 n − 1 =
ni=1n!(i1)!(ni)!= ∑ i = 1 n n ! ( i − 1 ) ! ( n − i ) ! =
(ni=1(n1)!(i1)!(ni)!)n= ( ∑ i = 1 n ( n − 1 ) ! ( i − 1 ) ! ( n − i ) ! ) ∗ n =
(n1i=0Cin)n= ( ∑ i = 0 n − 1 C n i ) ∗ n =
现在看性质4。
n2n1 n ∗ 2 n − 1

性质10

i=1nCini2=n(n+1)2n2 ∑ i = 1 n C n i ∗ i 2 = n ∗ ( n + 1 ) ∗ 2 n − 2

证明
和上一个性质有些类似。
ni=1Cini2= ∑ i = 1 n C n i ∗ i 2 =
用和上面差不多的方法得到:
(n1i=0Cin1(i+1))n= ( ∑ i = 0 n − 1 C n − 1 i ∗ ( i + 1 ) ) ∗ n =
(n1i=0Cin1i+n1i=0Cin1)n= ( ∑ i = 0 n − 1 C n − 1 i ∗ i + ∑ i = 0 n − 1 C n − 1 i ) ∗ n =
用性质9和性质4可以得到:
(2n2(n1)+2n1)n= ( 2 n − 2 ∗ ( n − 1 ) + 2 n − 1 ) ∗ n =
很明显 2n1=22n2 2 n − 1 = 2 ∗ 2 n − 2
所以原式= 2n2(n+1)n 2 n − 2 ∗ ( n + 1 ) ∗ n

性质11

i=0n(Cin)2=Cn2n ∑ i = 0 n ( C n i ) 2 = C 2 n n

证明:boshi说,他的门前有两棵树, 一棵是枣树,另一棵也是枣树,每棵树上有n个枣子,每个枣子都有一个不同的神奇的膜法符号。现在boshi从两棵树上一共打下了n个枣子,那么一共有多少种方案?是 Cn2n C 2 n n ,也是第一棵树上打下i个枣子,从第二棵树上打下(n-i)棵枣子的方案,根据乘法原理乘起来,又因为 Cin=Cnin C n i = C n n − i ,所以得到上一个式子。

卢卡斯定理

简单的说就是求 Cnm%p C m n % p 的时候可以化作 Cnm=Cn/pm/pCn%pm%p C m n = C m / p n / p ∗ C m % p n % p ,那么只要递归 Cn/pm/p C m / p n / p 即可。
证明我蠢我不会自己想

后记

啊啊啊搞了一下午终于证完了累死了。。。感觉自己和组合数的感情有了明显的提升(才怪)。。。
在文章的最后%一发数王。。。
%%%%%%%%%数王您太强了%%%%%%%%%%%
数王说以上所有定理都可以用那个那个那个证,虽然我不知道那个是哪个,但是反正好强啊%%%%%%%%
好吧以上都是不正经内容,正经内容是:
在做题的时候大家可能不一定都会遇到这些性质,但是在手动证明完这些性质后对于组合数变形的问题就会有更深一层的理解,总之,组合数性质可以用一下方法推出:
1.情景假设法(假设boshi从枣树选枣子的方案。。。
2.隔板法(boshi把枣子放成一排,通过在枣子间添加隔板来分组。。。
3.通向公式法
4.递推公式法
以上。

  • 67
    点赞
  • 188
    收藏
    觉得还不错? 一键收藏
  • 24
    评论
第一章 引论 1.1 组合数学研究的对象 1.2 组合问题典型实例 1.2.1 分派问题 1. 2.2 染色问题 1.2.3 幻方问题 1.2.4 36军官问题 1.2.5 中国邮路问题 习 题 第二章 排列与组合 2.1 两个基本计数原理 2.2 无重集的排列与组合 2.3 重集的排列与组合 2.4 排列生成算法 2.4.1 序数法 2.4.2 字典序法 2.4.3 轮转法 2.5 组合生成算法 .2.6 应用举例 习 题 第三章 容斥原理 3.1 引 言 3.2 容斥原理 3.3 几个重要公式 3.4 错位排列 3.5 有限制的排列 3.6 棋阵多项式 3.7 禁位排列 习 题 第四章 鸽巢原理 4.1 鸽巢原理 4. 2 鸽巢原理的推广形式 4. 3 ramsey数 4.4 ramsey数的性质 4.5 ramsey定理 习 题 第五章 母函数 5.1 母函数概念 5.2 幂级数型母函数 5.3 整数的拆分 5.4 ferrers图 5.5 指数型母函数 习 题 第六章 递归关系 6.1 引言 6.2 几个典型的递归关系.. 6.3 用母函数方法求解递归关系 6.4 常系数线性齐次递归关系的求解 6.5 常系数线性非齐次递归关系的求解 6.6 非常系数非线性递归关系的求解 6.7 差分表法 6.8 stirling数 习 题 第七章 polya定理 7.1 有限集的映射 7.2 群的基本概念 7.3 置换群 7.4 置换的奇偶性 7.5 置换群下的共轭类 7.6 burnside引理 7.7 polya定理 7.8 polya定理的母函数型式 7.9 不标号图的计数 习 题 第八章 图论基础 8.1 图的基本概念 8.2 同构图、完全图与二分图 8.3 通路、回路与图的连通性 8.4 euler图与hamilton图 8.5 割集与树 8.6 图的矩阵表示法 8.7 平面图、对偶图与色数 8.8 匹配理论 8.9 网络流 习 题 第九章 拉丁方与区组设计 9.1 引言 9.2 拉丁方 9.3 有限域 9.4 正交拉丁方的构造 9.5 完全区组设计 9.6 平衡不完全区组设计(bibd) 9.7 区组设计的构造 9.8 steiner三连系 9.9 hadamard矩阵 习 题 第十章 线性规划 10.1 lp问题引例 10.2 lp问题的一般形式 10.3 lp问题的标准型 10.4 可行域和最优可行解 10.5 单纯形法 10.6 单纯形表格法 10.7 两阶段法 10.8 对偶原理 10.9 对偶单纯形法 10.10 应用举例 习 题 第十一章 组合优化算法与计算的时间复杂度理论 11.1 dijkstra算法 11.2 floyd算法 11.3 kruskal算法 11.4 求最优树的破圈法和统观法 11.5 二分图中最大匹配与最佳匹配的算法 11.6 fleury算法 11.7 中国邮路问题及其算法 11.8 深度优先搜索法--dfs算法 11.9 项目网络与关键路径法 11.10 网络最大流算法 11.11 状态转移法 11.12 好算法、坏算法和np类问题 11.13 npc类问题 11.14 货郎问题的近似解 习 题... 参考文献
本书是《组合数学》第3版的修订版,全书共分8章,分别是:排列与组合、递推关系与母函数、容斥原理与鸽巢原理、burnside引理与polya定理、区组设计、线性规划、编码简介、组合算法简介。丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解。. 本书是计算机系本科生和研究生的教学用书,也可作为数学专业师生的教学参考书。 目录回到顶部↑ 第1章 排列与组合. 1.1 加法法则与乘法法则 1.2 一一对应 1.3 排列与组合 1.3.1 排列与组合的模型 1.3.2 排列与组合问题的举伊 1.4 圆周排列 1.5 排列的生成算法 1.5.1 序数法 1.5.2 字典序法 1.5.3 换位法 1.6 允许重复的组合与不相邻的组合 1.6.1 允许重复的组合 1.6.2 不相邻的组合 1.6.3 线性方程的整数解的个数问题 1.6.4 组合的生成 1.7 组合意义的解释 1.8 应用举例 1.9 stirling公式 1.9.1 wallis公式 .1.9.2 stirling公式的证明 习题 第2章 递推关系与母函数 2.1 递推关系 2.2 母函数 2.3 fibonacci序列 2.3.1 fibonacci序列的递推关系 2.3.2 若干等式 2.4 优选法与fibonacci序列的应用 2.4.1 优选法 2.4.2 优选法的步骤 2.4.3 fibonacci的应用 2.5 母函数的性质 2.6 线性常系数齐次递推关系 2.7 关于线性常系数非齐次递推关系 2.8 整数的拆分 2.9 ferrers图像 2.10 拆分数估计 2.11 指数型母函数 2.11.1 问题的提出 2.11.2 指数型母函数的定义 2.12 广义二项式定理 2.13 应用举例 2.14 非线性递推关系举例 2.14.1 stirling数 2.14.2 catalan数 2.14.3 举例 2.15 递推关系解法的补充 习题 第3章 容斥原理与鸽巢原理 3.1 demorgan定理 3.2 容斥定理 3.3 容斥原理举例 3.4 棋盘多项式与有限制条件的排列 3.5 有禁区的排列 3.6 广义的容斥原理 3.6.1 容斥原理的推广 3.6.2 一般公式 3.7 广义容斥原理的应用 3.8 第二类stirling数的展开式 3.9 欧拉函数φ(n) 3.10 n对夫妻问题 3.11 mobius反演定理 3.12 鸽巢原理 3.13 鸽巢原理举例 3.14 鸽巢原理的推广 3.14.1 推广形式之一 3.14.2 应用举例 3.14.3 推广形式之二 3.15 ramsey数 3.15.1 ramsey问题 3.15.2 ramsey数 习题 第4章 burnside引理与polya定理 4.1 群的概念 4.1.1 定义 4.1.2 群的基本性质 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 burnside引理 4.4.1 若干概念 4.4.2 重要定理 4.4.3 举例说明.. 4.5 polya定理 4.6 举例 4.7 母函数形式的polya定理 4.8 图的计数 4.9 polya定理的若干推广 习题 第5章 区组设计 5.1 问题的提出 5.2 拉丁方与正交的拉丁方 5.2.1 问题的引入 5.2.2 正交拉丁方及其性质 5.3 域的概念 5.4 galois域gf(pm) 5.5 正交拉丁方的构造 5.6 正交拉丁方的应用举例 5.7 均衡不完全的区组设计 5.7.1 基本概念 5.7.2 (b,u,r,k,λ)-设计 5.8 区组设计的构成方法 5.9 steiner三元素 5.10 kirkman女生问题 习题 第6章 线性规划 6.1 问题的提出 6.2 线性规划的问题 6.3 凸集 6.4 线性规划的几何意义 6.5 单纯形法的理论基础 6.5.1 松弛变量 6.5.2 解的充要条件 6.6 单纯形法与单纯形表格 6.7 改善的单纯形法 6.8 对偶概念 6.9 对偶单纯形法 习题 第7章 编码简介 7.1 基本概念 7.2 对称二元信道 7.3 纠错码 7.3.1 最近邻法则 7.3.2 hamming不等式 7.4 若干简单的编码 7.4.1 重复码 7.4.2 奇偶校验码 7.5 线性码 7.5.1 生成矩阵与校验矩阵 7.5.2 关于生成矩阵和校验矩阵的定理 7.5.3 译码步骤 7.6 hamming码 7.7 bch码 习题 第8章 组合算法简介 8.1 归并排序 8.1.1 算法 8.1.2 举例 8.1.3 复杂性分析 8.2 快速排序 8.2.1 算法的描述 8.2.2 复杂性分析 8.3 ford-johnson排序法 8.4 排序的复杂性下界 8.5 求第是个元素 8.6 排序网络 8.6.1 0-1原理 8.6.2 bn网络 8.6.3 复杂性分析 8.6.4 batcher奇偶归并网络 8.7 快速傅里叶变换 8.7.1 问题的提出 8.7.2 预备定理 8.7.3 快速算法 8.7.4 复杂性分析 8.8 dfs算法 8.9 bfs算法 8.10 αβ剪技术 8.11 状态与图 8.12 分支定界法 8.12.1 tsm问题 8.12.2 任务安排问题 8.13 最短树与kruskal算法 8.14 huffman树 8.15 多段判决 8.15.1 问题的提出 8.15.2 最佳原理 8.15.3 矩阵链积问题 8.15.4 图的两点间最短路径
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版近30年来多次改版,被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影n向,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的完美处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 目录回到顶部↑ 出版者的话 专家指导委员会 译者序 前言 第1章 什么是组合数学 1.1 例:棋盘的完美覆盖 1.2 例:切割立方体 1.3 例:幻方 1.4 例:四色问题 1.5 例:36军官问题 1.6 例:最短路径问题 1.7 例:nim取子游戏 1.8 练习题 第2章 鸽巢原理 2.1 鸽巢原理:简单形式 2.2 鸽巢原理:加强形式 2.3 ramsey定理 2.4 练习题 第3章 排列与组合 3.1 四个基本的计数原理 .3.2 集合的排列 3.3 集合的组合 3.4 多重集的排列 3.5 多重集的组合 3.6 练习题 第4章 生成排列和组合 4.1 生成排列 4.2 排列中的逆序 4.3 生成组合 4.4 生成卜组合 4.5 偏序和等价关系 4.6 练习题 第5章 二项式系数 5.1 pascal公式 5.2 二项式定理 5.3 一些恒等式 5.4 二项式系数的单峰性 5.5 多项式定理 5.6 牛顿二项式定理 5.7 再论偏序集 5.8 练习题 第6章 容斥原理及应用 6.1 容斥原理 6.2 具有重复的组合 6.3 错位排列 6.4 带有禁止位置的排列 6.5 另外的禁排位置问题 6.6 莫比乌斯反演 6.7 练习题 第7章 递推关系和生成函数 7.1 一些数列 7.2 线性齐次递推关系 7.3 非齐次递推关系 7.4 生成函数 7.5 递归和生成函数 7.6 一个几何的例子 7.7 指数生成函数 7.8 练习题 第8章 特殊计数序列 8.1 catalan数 8.2 差分序列和stirling数 8.3 分拆数 8.4 一个几何问题 8.5 格路径和schroder数 8.6 练习题 第9章 二分图中的匹配 9.1 一般问题表述 9.2 匹配 9.3 互异代表系统 9.4 稳定婚姻 9.5 练习题 第10章 组合设计 10.1 模运算 10.2 区组设计 10.3 steiner三元系统 10.4 拉丁方 10.5 练习题 第11章 图论导引 11.1 基本性质 11.2 欧拉迹 11.3 hamilton路径和hamilton圈 11.4 二分多重图 11.5 树 11.6 shannon开关游戏 11.7 再论树 11.8 练习题 第12章 有向图及网络 12.1 有向图 12.2 网络 12.3 练习题 第13章 再论图 13.1 色数 13.2 平面和平面图 13.3 五色定理 13.4 独立数和团数 13.5 连通性 13.6 练习题 第14章 polya计数法 14.1 置换群与对称群 14.2 burnside定理 14.3 polya计数公式 14.4 练习题 练题的答案与提示 参考文献 索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值