bzoj3784 树上的路径 点分治+RMQ+优先队列

2 篇文章 0 订阅

题目分析

树上的路径路径?可以,这很点分治。

求最长的 m m m条的长度?可以,着很优先队列。

但问题是,用优先队列只能做全局才能保证复杂度是对的,但点分治是分治就不能做全局。

于是对于每次点分治,都记录下每一条从分治中心 r t rt rt到点 x x x的路径和其长度,将它们依次放在一个序列的末尾,以此类推继续分治。对于每一个分治中心,在处理它的时候记录下来的这些东西,两两合并可以组成一条路径。

因为已经放在序列上了,每一个元素可以去尝试组合的元素处于一个区间,问题转化为:

给定一个序列,每次可以取两个元素 a , b a,b a,b,对于每一个 b b b a a a只能在 [ l , r ] [l,r] [l,r]中取,取这两个元素的价值是 v a + v b v_a+v_b va+vb,求价值前 m m m大的数对的价值。

则转化为了超级钢琴那道题。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}

const int N=50005,KN=800005,inf=0x3f3f3f3f;
int n,m,tot,rt,mi,js,klp,krp;
int h[N],ne[N<<1],to[N<<1],w[N<<1],sz[N],vis[N];
int lp[KN],rp[KN],v[KN],Log[KN],bin[20],mxd[20][KN];

void add(int x,int y,int z) {to[++tot]=y,ne[tot]=h[x],h[x]=tot,w[tot]=z;}
void getrt(int x,int las,int SZ) {
	sz[x]=1;int bl=0;
	for(RI i=h[x];i;i=ne[i])
		if(to[i]!=las&&!vis[to[i]])
			getrt(to[i],x,SZ),sz[x]+=sz[to[i]],bl=max(bl,sz[to[i]]);
	bl=max(bl,SZ-sz[x]);
	if(bl<mi) mi=bl,rt=x;
}
void dfs(int x,int las,int dis) {
	++js,lp[js]=klp,rp[js]=krp,v[js]=dis;
	for(RI i=h[x];i;i=ne[i])
		if(to[i]!=las&&!vis[to[i]]) dfs(to[i],x,dis+w[i]);
}
void work(int x) {
	vis[x]=1;
	++js,lp[js]=js,rp[js]=js-1,v[js]=0,klp=js;
	for(RI i=h[x];i;i=ne[i])
		if(!vis[to[i]]) krp=js,dfs(to[i],x,w[i]);
	for(RI i=h[x];i;i=ne[i])
		if(!vis[to[i]]) mi=inf,getrt(to[i],x,sz[to[i]]),work(rt);
}
void rmq() {
	bin[0]=1;for(RI i=1;i<=19;++i) bin[i]=bin[i-1]<<1;
	Log[0]=-1;for(RI i=1;i<=js;++i) Log[i]=Log[i>>1]+1;
	for(RI i=1;i<=js;++i) mxd[0][i]=i;
	for(RI j=1;j<=19;++j)
		for(RI i=1;i+bin[j]-1<=js;++i)
			if(v[mxd[j-1][i]]>v[mxd[j-1][i+bin[j-1]]]) mxd[j][i]=mxd[j-1][i];
			else mxd[j][i]=mxd[j-1][i+bin[j-1]];
}
int getmxd(int l,int r) {
	int t=Log[r-l+1];
	if(v[mxd[t][l]]>v[mxd[t][r-bin[t]+1]]) return mxd[t][l];
	else return mxd[t][r-bin[t]+1];
}

struct node{int l,r,x,bj,v;};
bool operator < (node A,node B) {return A.v<B.v;}
priority_queue<node> q;
int main()
{
	int x,y,z;
	n=read(),m=read();
	for(RI i=1;i<n;++i) x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
	mi=inf,getrt(1,0,n),work(rt),rmq();
	for(RI i=1;i<=js;++i) {
		if(lp[i]>rp[i]) continue;
		node kl;kl.l=lp[i],kl.r=rp[i],kl.x=i,kl.bj=getmxd(lp[i],rp[i]);
		kl.v=v[i]+v[kl.bj],q.push(kl);
	}
	for(RI i=1;i<=m;++i) {
		node kl=q.top();q.pop();
		if(kl.l<kl.bj) {
			node kkl;kkl.l=kl.l,kkl.r=kl.bj-1,kkl.x=kl.x;
			kkl.bj=getmxd(kkl.l,kkl.r),kkl.v=v[kkl.x]+v[kkl.bj],q.push(kkl);
		}
		if(kl.bj<kl.r) {
			node kkl;kkl.l=kl.bj+1,kkl.r=kl.r,kkl.x=kl.x;
			kkl.bj=getmxd(kkl.l,kkl.r),kkl.v=v[kkl.x]+v[kkl.bj],q.push(kkl);
		}
		printf("%d\n",kl.v);
	}
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值