loj3059/bzoj5494/洛谷P5294 [HNOI2019]序列 单调栈+主席树

题目分析

若a单调不升,如图,b全部相等显然比b不相等要优。
灵魂画手litble
那么 ∑ i = 1 m ( a i − b ) 2 \sum_{i=1}^m (a_i-b)^2 i=1m(aib)2,求导得 ∑ a i 2 − 2 b ( ∑ a i ) + m b 2 \sum a_i^2-2b(\sum a_i)+mb^2 ai22b(ai)+mb2,当导函数等于0时取到最小值,此时 b = ∑ a i m b=\frac{\sum a_i}{m} b=mai也就是平均值。

若将原序列划分为一段段的单调不升区间,每一段的b都是平均值。然后因为b还不满足单调不降性质,所以要合并一些区间,也就是将这两个区间里的元素重新降序排列。

得到一种50分做法:维护一个单调栈,每次将新元素当成一个区间插入末尾,若b值不满足单调不降,则将这个区间与单调栈前一个区间合并。

那么询问怎么做呢?

从前往后跑一次单调栈,从后往前跑一次,都用可持久化数组(主席树完成)维护好。然后我们只要知道 x x x所在的区间的左右端点 L L L R R R,将从前往后合并了前 L − 1 L-1 L1个元素时的答案,和从后往前合并了第 R + 1 R+1 R+1 n n n个元素时的答案,与 [ L , R ] [L,R] [L,R]的贡献相加即可。

可以二分一个 R R R,然后在这个 R R R的基础上,在可持久化数组上二分(其实就是线段树二分式的实现方法),找到一个最大的满足前一个区间的平均值比 [ L , R ] [L,R] [L,R]平均值小(或等于)的 L L L,再检验这个 [ L , R ] [L,R] [L,R]的平均值是否比 R R R后面一个区间要小,即可同时完成 R R R的二分。

复杂度 O ( n log ⁡ 2 n ) O(n \log^2 n) O(nlog2n)

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}
typedef long long LL;
typedef double db;
const db eps=1e-10;
const int mod=998244353,N=100005;
int n,m,SZ;
int a[N],inv[N],ans1[N],ans2[N],top1[N],top2[N],rt1[N],rt2[N];
struct node{int ls,rs,l,r,lkr;}tr[N*36];

int qm(int x) {return x>=mod?x-mod:x;}
struct data{
	int s0;LL s1;int s2;
	data friend operator + (data A,data B)
		{return (data){A.s0+B.s0,A.s1+B.s1,qm(A.s2+B.s2)};}
	data friend operator - (data A,data B)
		{return (data){A.s0-B.s0,A.s1-B.s1,qm(A.s2-B.s2+mod)};}
	bool friend operator <= (data A,data B)
		{return (db)A.s1/(db)A.s0<(db)B.s1/(db)B.s0+eps;}
	bool friend operator < (data A,data B)
		{return (db)A.s1/(db)A.s0+eps<(db)B.s1/(db)B.s0;}
	int val() {return qm(s2-1LL*(s1%mod)*(s1%mod)%mod*inv[s0]%mod+mod);}
}st[N],sum[N];

void up(int x) {
	tr[x].l=tr[tr[x].ls].l,tr[x].lkr=tr[tr[x].ls].lkr;
	tr[x].r=(tr[x].rs?tr[tr[x].rs].r:tr[tr[x].ls].r);
}
void ins(int &x,int y,int s,int t,int pos,int l,int r) {
	x=++SZ,tr[x]=tr[y];
	if(s==t) {tr[x].l=l,tr[x].r=tr[x].lkr=r;return;}
	int mid=(s+t)>>1;
	if(pos<=mid) ins(tr[x].ls,tr[y].ls,s,mid,pos,l,r),tr[x].rs=0;
	else ins(tr[x].rs,tr[y].rs,mid+1,t,pos,l,r);
	up(x);
}
int getr(int x,int s,int t,int pos) {
	if(s==t) return tr[x].r;
	int mid=(s+t)>>1;
	if(pos<=mid) return getr(tr[x].ls,s,mid,pos);
	else return getr(tr[x].rs,mid+1,t,pos);
}
int query(int x,int s,int t,int lim,data &now) {
	if(s>lim) return -1;
	if(t<=lim) {
		data kl=sum[tr[x].lkr]-sum[tr[x].l-1];
		data kr=sum[tr[x].r]-sum[tr[x].lkr];
		if(kr+now<=kl) {
			now=now+sum[tr[x].r]-sum[tr[x].l-1];
			return -1;
		}
		if(s==t) return tr[x].r+1;
	}
	int mid=(s+t)>>1,re=query(tr[x].rs,mid+1,t,lim,now);
	if(re==-1) re=query(tr[x].ls,s,mid,lim,now);
	return re;
}

void prework() {
	int top=0;
	for(RI i=1;i<=n;++i) {
		data now=(data){1,a[i],(int)(1LL*a[i]*a[i]%mod)};
		while(top&&now<=st[top]) now=now+st[top],--top;
		ans1[i]=qm(ans1[i-now.s0]+now.val());
		st[++top]=now,top1[i]=top,ins(rt1[i],rt1[i-1],1,n,top,i-now.s0+1,i);
		
	}
	top=0;
	for(RI i=n;i>=1;--i) {
		data now=(data){1,a[i],(int)(1LL*a[i]*a[i]%mod)};
		while(top&&st[top]<=now) now=now+st[top],--top;
		ans2[i]=qm(ans2[i+now.s0]+now.val());
		st[++top]=now,top2[i]=top,ins(rt2[i],rt2[i+1],1,n,top,i,i+now.s0-1);
	}
	printf("%d\n",ans1[n]);
}
void work() {
	while(m--) {
		int x=read(),y=read();
		int l=0,r=top2[x+1],resL=0,resR=0;
		while(l<=r) {
			int mid=(l+r)>>1;
			int R=(mid==0?x:getr(rt2[x+1],1,n,top2[x+1]-mid+1));
			data now=(data){1,y,(int)(1LL*y*y%mod)}+sum[R]-sum[x];
			int L=query(rt1[x-1],1,n,top1[x-1],now);
			if(L==-1) L=1;
			if(R==n||now<=sum[getr(rt2[x+1],1,n,top2[x+1]-mid)]-sum[R])
				resL=L,resR=R,r=mid-1;
			else l=mid+1;
		}
		data now=sum[resR]-sum[x]+sum[x-1]-sum[resL-1]+(data){1,y,(int)(1LL*y*y%mod)};
		printf("%d\n",qm(qm(now.val()+ans1[resL-1])+ans2[resR+1]));
	}
}

int main()
{
	n=read(),m=read();
	for(RI i=1;i<=n;++i)
		a[i]=read(),sum[i]=sum[i-1]+(data){1,a[i],(int)(1LL*a[i]*a[i]%mod)};
	inv[1]=1;for(RI i=2;i<=n;++i) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
	prework(),work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值