CUDA进阶第六篇-GPU资源(显存、句柄等)管理

本文针对一个图像算法在GPU上运行时遇到的内存管理和性能瓶颈问题,提出了两种优化方案:一是通过C++重构来改善资源管理;二是借鉴Tensorflow的内存管理方式,采用预分配大块显存并按需分配的方法,有效解决了大图像处理时的显存越界问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在加速一个图像算法,符合《CUDA进阶第五篇-如何估算出程序的GPU加速比》中的第二种情况,程序由核函数和GPU API实现,但是资源管理特别差,显存和句柄在程序中使用时才申请。每次函数执行都要申请和释放一遍,非常耗费时间。

 

优化方案一:C++重构

我想到的第一个方案,就是C++重构,将所有的显存和句柄定义为成员变量,在构造函数中申请,析构函数中释放。难度比较低,但是工作量比较大,因为不同变量申请的显卡大小不一样,输入图像的大小是不一定的,所以对于每一个变量,必须申请足够大的内存,而且这种情况下,如果发生显存越界,则很难定位。而且参数名非常乱,着实费了一些劲才重构完。

优化方案二

因为这个算法中变量比较多,重构完后,输入大图像果然出现显存越界问题……真的是非常懒得去定位。某天灵光突现,可以用Tensorflow里的显存管理方式进行重构啊,先申请一块非常大的显存,程序中需要的时候直接分配即可。这样可以最大程度上的少修改原代码,并且可以有效的解决大图像情况容易出现的显存越界问题。详细代码如下。

class MemoryManagement
{
public:
    MemoryManagement(int workspace_total_size)
    {
        workspace_total_size_ = workspace_total_size;
        CUDA_CHECK(cudaMalloc(&workspace_, workspace_total_size_));

        init();
    }
    ~MemoryManagement()
    {
        CUDA_CHECK(cudaFree(workspace_));
    }

    void AllocateMemory(void **ptr, int size)
    {
        int cache_line_size = 4;
        int tmp_size = (size + cache_line_size) / cache_line_size * cache_line_size;
        workspace_used_size_ += tmp_size;

        assert(workspace_used_size_ <= workspace_total_size_);

        *ptr = (void*)workspace_ptr_;
        workspace_ptr_ += size;
    }

    void Reset()
    {
        init();
    }

protected:
    char *workspace_;
    char *workspace_ptr_;
    int workspace_total_size_;
    int workspace_used_size_;

    void init()
    {
        CUDA_CHECK(cudaMemset(workspace_, 0, workspace_total_size_));
        workspace_ptr_ = workspace_;
        workspace_used_size_ = 0;
    }
};

 

 

### 如何释放服务器上指定GPU显存 在深度学习和高性能计算场景下,清理特定GPU显存通常涉及终止占用该GPU资源的相关进程。以下是具体方法: #### 终端操作流程 可以通过 `nvidia-smi` 命令获取当前系统中各GPU的使用情况以及占用其资源的进程列表[^1]。执行以下命令可查看详细的GPU状态及进程信息: ```bash nvidia-smi ``` 上述命令会返回每块GPU的详细状态,包括编号、名称、功耗、温度、利用率、已分配的显存和总显存等数据[^3]。同时,“Processes”部分列出了正在使用的进程及其ID。 要释放某块GPU上的显存,需先找到并杀死与其关联的所有进程。假设目标是释放第0号GPU(即GPU 0)的显存,则按照如下方式处理: 1. **查找占用GPU资源的进程** 执行以下命令筛选出仅与目标GPU相关的进程: ```bash nvidia-smi | grep "GPU 0" ``` 2. **记录进程PID** 上述命令的结果将显示所有占用GPU 0的进程及其对应的PID(Process ID)。例如: ``` 12345 C python 896MiB 12346 C tensorboard 128MiB ``` 此处,`12345` 和 `12346` 即为需要清除的进程ID。 3. **强制终止这些进程** 使用 `kill` 或 `pkill` 命令逐一结束对应进程: ```bash kill -9 12345 kill -9 12346 ``` 完成以上步骤后,再次运行 `nvidia-smi` 验证显存是否已被成功回收。如果仍有残留占用,可能是因为某些后台服务未完全退出;此时建议重启相关服务或整个节点以彻底解决问题[^2]。 另外,在CUDA环境中开发的应用程序可能会因为异常中断而遗留隐匿句柄导致无法正常释放显存。针对这种情况,除了手动杀掉可疑线程外,也可以尝试调用 CUDA 提供的专用函数来进行全局范围内的资源销毁工作[^4]: ```cpp cudaDeviceReset(); ``` 此C++ API 能够确保当前进程中所有的 GPU 设备都被安全关闭,并且回收它们所持有的全部内存空间。 #### 注意事项 - 杀死进程前务必确认无误以免影响其他重要任务; - 对于长期部署的服务型应用来说,频繁的人工干预并不是理想方案——应当优化代码逻辑减少不必要的资源浪费现象发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值