阅读FSRCNN自我小结
创新点
FSRCNN的动机是为了加速SRCNN模型,因此它从以下几个方面进行了改进:
- 在网络末端使用了一个反卷积层==>采用后采样框架,相比SRCNN中使用先采样框架,减少了计算负担。
- 在网路前端重新改变了输入特征的维数
- 在网络非线性映射层中间部分,使用了更小的卷积核并应用了更深的卷积层
针对问题的改进措施
问题:针对SRCNN中有两点限制了速度。
- 低分辨率图像需要上采样(通过三次插值);
- 非线性映射步骤,需要缩减参数加快速度。
改进措施:
对于第一个问题采用反卷积层代替三次插值;
第二个问题,添加Shrinking层和Expanding层,并将一个大层(是SRCNN中的非线性映射层,层较宽)用一些小层(用m个深度的小层来代替宽层)(卷积核大小是3*3)来代替。
整个网络结构类似于漏斗的形状,中间细两端粗。
这个网络不仅仅速度快,而且除了最后一个反卷积层会随着采样因子的不同改变参数之外,其他层不需要更改参数。
贡献
- 设计漏斗结构的卷积网络,不需要预处理操作 速度提升
- 训练速度快
- 只要改变最后的反卷积层就可以,不用像SRCNN网络中,随着采样因