详解生成对抗网络(GAN)

本文详细介绍了生成对抗网络(GAN)的基本概念,包括生成器和判别器的作用,以及模型的优化训练过程。通过图像和公式解析了GAN的训练策略,阐述了纳什均衡在GAN中的应用。此外,还提及了GAN的一些经典变种,如DCGAN、WGAN和WGAN-GP以及Conditional GAN,展示了它们对模型稳定性和生成质量的提升。
摘要由CSDN通过智能技术生成

详解生成对抗网络(GAN)

本篇博文从以下几个结构介绍GAN模型

  1. 概述
  2. 模型优化训练
  3. GAN的一些经典变种

    1 概述

GAN是由Ian Goodfellow于2014年首次提出,学习GAN的初衷,即生成不存在于真实世界的数据。类似于AI具有创造力和想象力。

GAN有两大护法GD:

G是generator,生成器: 负责凭空捏造数据出来

D是discriminator,判别器: 负责判断数据是不是真数据

这样可以简单看作是两个网络的博弈过程。在原始的GAN论文里面,G和D都是两个多层感知机网络。GAN操作的数据不一定非是图像数据,在此用图像数据为例解释以下GAN:
在这里插入图片描述

上图中,z是随机噪声(随机生成的一些数,也是GAN生成图像的源头)。D通过真图和假图的数据,进行一个二分类神经网络训练。G根据一串随机数就可以捏造出一个"假图像"出来,用这些假图去欺骗D,D负责辨别这是真图还是假图,会给出一个score。比如,G生成了一张图,在D这里评分很高,说明G生成能力是很成功的;若D给出的评分不高,可以有效区分真假图,则G的效果还不太好,需要调整参数。


2 模型优化训练
  • ##### 通过图像解释:

GAN的训练过程,根据GAN的训练算法,如下图:
在这里插入图片描述

GAN的训练在同一轮梯度反转的过程中可以细分为2步:(1)先训练D;(2)再训练G。注意,不是等所有的D训练好了才开始训练G,因为D的训练也需要上一轮梯度反转中的G的输出值作为输入。

<
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值