题目:
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
1.插入一个字符
2.删除一个字符
3.替换一个字符
解题思路:
我们需要运用题目中的三种操作来把word1转换成word2。首先,分析一下这3种操作。假设给定A,B两个单词,那对于A,B来说,只需要在A上进行操作,最终让A=B即可。我们用D[i][j]来表示A的前i个字母和B前J个字母之间的编辑距离,当我们想获得D[i][j]时,我们可以利用上述三种操作实现A=B。
1.在D[i-1][j]的基础上(此时已经知道A[:i-1]=B[:j]),所以在A中删除最后一个元素即可。
2.在D[i][j-1]的基础上(此时A[:i]=B[:j-1]),所以在A上插入B[j]即可
3.在D[i-1][j-1]的基础上(此时A[:i-1]=B[:j-1]]),所以把A[i]修改成B[j]即可,但注意如果A[i]=B[j],我们不需要做任何操作。
假设word1=‘HORSE’,word2=‘ROS’,此时i=3,j=2,D[i][j]表示HOR与RO的编辑距离。我们发现,通过D[i][j-1](即HOR与R的编辑距离),在word1 HOR上再插入O就可以求出HOR与RO的距离,通过D[i-1][j] (即HO与RO的编辑距离),在word1 HOR上删除R就可以求出HOR与RO的距离,通过D[i-1][j-1] (即HO与R的编辑距离),在word1 HOR种把R修改为O就可以求出HOR与RO的距离。
我们发现上述三种方法都可以算出距离,但是D[i][j]是最小值,所以
D
[
i
]
[
j
]
=
m
i
n
(
D
[
i
]
[
j
−
1
]
+
1
,
D
[
i
−
1
]
[
j
]
+
1
,
D
[
i
−
1
]
[
j
−
1
]
+
1
)
D[i][j]=min(D[i][j-1]+1,D[i-1][j]+1,D[i-1][j-1]+1)
D[i][j]=min(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1]+1).
这里我们要注意,如果在D[i-1][j-1] 情况中,发现word1[i]==word2[j],那么我们就不需要任何操作。所以综上我们写出如下的状态转移方程:
对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = j,D[i][0] 相当于对 word1 执行 i 次删除操作,D[0][j] 相当于对 word1执行 j 次插入操作。
class Solution:
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
n = len(word1)
m = len(word2)
# 有一个字符串为空串
if n * m == 0:
return n + m
# DP 数组
D = [ [0] * (m + 1) for _ in range(n + 1)]
# 边界状态初始化
for i in range(n + 1):
D[i][0] = i
for j in range(m + 1):
D[0][j] = j
# 计算所有 DP 值
for i in range(1, n + 1):
for j in range(1, m + 1):
left = D[i - 1][j] + 1
down = D[i][j - 1] + 1
left_down = D[i - 1][j - 1]
if word1[i - 1] != word2[j - 1]:
left_down += 1
D[i][j] = min(left, down, left_down)
return D[n][m]