什么是格雷码?
下面一段来自百度百科:
定义:在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code)。
另外当由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。
在数字系统中,常要求代码按一定顺序变化。例如,按自然数递增计数,若采用8421码,则数0111变到1000时四位均要变化,而在实际电路中,4位的变化不可能绝对同时发生,则计数中可能出现短暂的其它代码(1100、1111等)。在特定情况下可能导致电路状态错误或输入错误。使用格雷码可以避免这种错误。格雷码有多种编码形式。
由此可见,使用格雷码可以让数字电路的变化趋于稳定。
格雷码特点
格雷码属于可靠性编码,是一种错误最小化的编码方式。
因为,虽然自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,能使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它在相邻位间转换时,只有一位产生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。由于这种编码相邻的两个码组之间只有一位不同,因而在用于方向的转角位移量-数字量的转换中,当方向的转角位移量发生微小变化(而可能引起数字量发生变化时,格雷码仅改变一位,这样与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。
格雷码是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。
由于格雷码是一种变权码,每一位码没有固定的大小,很难直接进行比较大小和算术运算,也不能直接转换成液位信号,要经过一次码变换,变成自然二进制码,再由上位机读取。
典型格雷码是一种采用绝对编码方式的准权码,其权的绝对值为2^i-1(设最低位i=1)。
格雷码的十进制数奇偶性与其码字中1的个数的奇偶性相同。
格雷码规律
那么格雷码有什么规律呢?当用一个二进制表示格雷码时,也就是n=1时,格雷码只有0,1;
n=2时,格雷码是:00,01,11,10;
n=3时,格雷码是:000,001,011,010,110,111,101,100;
由此可见,格雷码都有一个普遍规律: 第一:格雷码的个数为2的n次方。如n=3时,有8个格雷码。
第二:格雷码的最高位有规律,前面一半为0,后面一半为1;第三:格雷码除去最高位后,是对称的。10对10,11对11.,上2(n-1)与下2(n-1)是对称的。
上面三点规律可以从下图看出:
格雷码与自然二进制数之间的转换
(1)二进制数转换为格雷码
verilog代码实现就一句:
assign gray_code = (bin_code>>1) ^ bin_code;
(2)格雷码转换为二进制数
module gray_to_bin(
gray_in,
bin_out
);
parameter WIDTH = 4;
input [WIDTH-1:0] gray_in;
output reg [WIDTH-1:0] bin_out;
//===================================================
// ------------------- MAIN CODE -------------------
//===================================================
always @(*) begin
bin_out[3] = gray_in[3];
bin_out[2] = gray_in[2]^bin_out[3];
bin_out[1] = gray_in[1]^bin_out[2];
bin_out[0] = gray_in[0]^bin_out[1];
end
endmodule