深度学习调参策略【转】

经常会被问到你用深度学习训练模型时怎么样改善你的结果呢?然后每次都懵逼了,一是自己懂的不多,二是实验的不多,三是记性不行忘记了。所以写这篇博客,记录下别人以及自己的一些经验。

Ilya Sutskever(Hinton的学生)讲述了有关深度学习的见解及实用建议:

获取数据:确保要有高质量的输入/输出数据集,这个数据集要足够大、具有代表性以及拥有相对清楚的标签。缺乏数据集是很难成功的。

预处理:将数据进行集中是非常重要的,也就是要使数据均值为0,从而使每个维度的每次变动为1。有时,当输入的维度随量级排序变化时,最好使用那个维度的log(1+x)。基本上,重要的是要找到一个0值的可信编码以及自然分界的维度。这样做可使学习工作得更好。情况就是这样的,因为权值是通过公式来更新的:wij中的变化 \propto xidL/dyj(w表示从层x到层y的权值,L是损失函数)。如果x的均值很大(例如100),那么权值的更新将会非常大,并且是相互关联的,这使得学习变得低劣而缓慢。保持0均值和较小的方差是成功的关键因素。

批处理:在如今的计算机上每次只执行一个训练样本是很低效的。反之如果进行的是128个例子的批处理,效率将大幅提高,因为其输出量是非常可观的。事实上使用数量级为1的批处理效果不错,这不仅可获得性能的提升同时可降低过度拟合;不过这有可能会被大型批处理超越。但不要使用过大的批处理,因为有可能导致低效和过多过度拟合。所以我的建议是:根据硬件配置选取适合的批处理规模,量力而为会更加高效。

梯度归一化:根据批处理的大小来拆分梯度。这是一个好主意,因为如果对批处理进行倍增(或倍减),无需改变学习率(无论如何,不要太多)。

学习率计划:从一个正常大小的学习率(LR)开始,朝着终点不断缩小。

1LR的典型取值是 0.1,令人惊讶的是,对于大量的神经网络问题来说,0.1是学习率的一个很好的值。通常学习率倾向于更小而非更大。
使用一个 验证集——一个不进行训练的训练集子集,来决定何时降低学习率以及何时停止训练(例如当验证集的错误开始增多的时候)。
学习率计划的实践建议:若发现验证集遭遇瓶颈,不妨将LR除以2(或5),然后继续。最终,LR将会变得非常小,这也到了停止训练的时候了。这样做可以确保在验证性能受到损害的时候,你不会拟合(或过度拟合)训练数据。降低LR是很重要的,通过验证集来控制LR是个正确的做法。

最重要的是要关注学习率。一些研究人员(比如Alex Krizhevsky)使用的方法是,监视更新范数和权值范数之间的比率。比率取值大约为10¯³。如果取值过小,那么学习会变得非常慢;如果取值过大,那么学习将会非常不稳定甚至失败。

权值初始化。关注权值在学习开始时的随机初始化。

如果想偷懒,不妨试试0.02*randn(num_params)。这个范围的值在许多不同的问题上工作得很好。当然,更小(或更大)的值也值得一试。
如果它工作得不好(例如是一个非常规的和/或非常深的神经网络架构),那么需要使用init_scale/sqrt(layer_width)*randn来初始化每个权值矩阵。在这种情况下,init_scale应该设置为0.1或者1,或者类似的值。
对于深度且循环的网络,随机初始化是极其重要的。如果没有处理好,那么它看起来就像没有学习到任何东西。我们知道,一旦条件都设置好了,神经网络就会学习。
一个有趣的故事:多年来,研究人员相信SGD不能训练来自随机初始化的深度神经网络。每次尝试都以失败告终。令人尴尬的是,他们没有成功是因为使用“小的随机权值”来进行初始化,虽然小数值的做法在浅度网络上工作得非常好,但在深度网络上的表现一点也不好。当网络很深时,许多权值矩阵之间会进行乘积,所以不好的结果会被放大。
但如果是浅度网络,SGD可以帮助我们解决该问题。

所以关注初始化是很有必要的。尝试多种不同的初始化,努力就会得到回报。如果网络完全不工作(即没法实施),继续改进随机初始化是正确的选择。

如果正在训练RNN或者LSTM,要对梯度(记得梯度已除以批量大小)范数使用一个硬约束。像15或者5这样的约束在我个人的实验中工作得很好。请将梯度除以批处理大小,再检查一下它的范数是否超过15(或5)。如果超过了,将它缩小到15(或5)。这个小窍门在RNN和LSTM的训练中发挥着巨大作用,不这样做的话,爆炸性的梯度将会导致学习失败,最后不得不使用像1e-6这样微小而无用的学习率。

数值梯度检查:如果没有使用过Theano或者Torch,梯度实现只能亲力亲为了。在实现梯度的时候很容易出错,所以使用数值梯度检查是至关重要的。这样做会让你对自己的代码充满信心。调整超级参数(比如学习率和初始化)是非常有价值的,因此好刀要用在刀刃上。

如果正在使用LSTM同时想在具有大范围依赖的问题上训练它们,那么应该将LSTM遗忘关口的偏差初始化为较大的值。默认状态下,遗忘关口是S型的全部输入,当权值很小时,遗忘关口会被设置为0.5,这只能对部分问题有效。这是对LSTM初始化的一个警示。

数据增加(Data augmentation):使用算法来增加训练实例数量是个有创意的做法。如果是图像,那么应该转换和旋转它们;如果是音频,应该将清晰的部分和所有类型的杂音进行混合处理。数据添加是一门艺术(除非是在处理图像),这需要一定的常识。

dropout:dropout提供了一个简单的方法来提升性能。记得要调整退出率,而在测试时不要忘记关闭dropout,然后对权值求乘积(也就是1-dropout率)。当然,要确保将网络训练得更久一点。不同于普通训练,在进入深入训练之后,验证错误通常会有所增加。dropout网络会随着时间推移而工作得越来越好,所以耐心是关键。

综合(Ensembling)。训练10个神经网络,然后对其预测数据进行平均。该做法虽然简单,但能获得更直接、更可观的性能提升。有人可能会困惑,为什么平均会这么有效?不妨用一个例子来说明:假如两个分类器的错误率为70%,如果其中一个的正确率保持较高,那么平均后的预测会更接近正确结果。这对于可信网络的效果会更加明显,当网络可信时结果是对的,不可信时结果是错的。

(下面几点是上面的简化版)

1:准备数据:务必保证有大量、高质量并且带有干净标签的数据,没有如此的数据,学习是不可能的
2:预处理:这个不多说,就是0均值和1方差化
3:minibatch:建议值128,1最好,但是效率不高,但是千万不要用过大的数值,否则很容易过拟合
4:梯度归一化:其实就是计算出来梯度之后,要除以minibatch的数量。这个不多解释
5:下面主要集中说下学习率
5.1:总的来说是用一个一般的学习率开始,然后逐渐的减小它
5.2:一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点。
5.3:一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了。
5.4:很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weight的norm),如果这个比率在10-3附近,如果小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来失败。
6:使用验证集,可以知道什么时候开始降低学习率,和什么时候停止训练。
7:关于对weight初始化的选择的一些建议:
7.1:如果你很懒,直接用0.02*randn(num_params)来初始化,当然别的值你也可以去尝试
7.2:如果上面那个不太好使,那么久依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randn,init_scale可以被设置为0.1或者1
7.3:初始化参数对结果的影响至关重要,要引起重视。
7.4:在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行了,因为weight更新的时候,是靠很多weight相乘的,越乘越小,有点类似梯度消失的意思(这句话是我加的)
8:如果训练RNN或者LSTM,务必保证gradient的norm被约束在15或者5(前提还是要先归一化gradient),这一点在RNN和LSTM中很重要。
9:检查下梯度,如果是你自己计算的梯度。
10:如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点
12:尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转啊之类的,来扩充数据训练集合。
13:使用dropout
14:评价最终结果的时候,多做几次,然后平均一下他们的结果。

超参数(Hyper-Parameter)是困扰神经网络训练的问题之一,因为这些参数不可通过常规方法学习获得。

神经网络经典五大超参数:

学习率(Leraning Rate)、权值初始化(Weight Initialization)、网络层数(Layers)

单层神经元数(Units)、正则惩罚项(Regularizer|Normalization)

这五大超参数使得神经网络更像是一门实践课,而不是理论课。

懂神经网络可能只要一小时,但是调神经网络可能要几天。

https://zhuanlan.zhihu.com/p/24720954#!


英文介绍:]

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

知乎上的一些比较好的解答:https://www.zhihu.com/question/41631631?from=profile_question_card

https://zhuanlan.zhihu.com/p/24720954#!


没做过CNN,RNN,调过连续值DNN,以下经验仅限于CTR
1.样本要足够随机,防止大数据淹没小数据
2.样本要做归一化
3.激活函数要视样本输入选择
4.minibatch很重要,几百到几千是比较合适的(很大数据量的情况下),无论是cnn还是rnn,batch normalization都有用,不一定结果提高几个点,收敛快多了
5.learning rate很重要,可以直接用adagrad or adadelta,省去一些麻烦,然后把冲量调到0.9以上
6.权重初始化,可用高斯分布乘上一个很小的数
7.loss不降了lr就除10


调了快1年的rnn, 深刻的感受到,深度学习是一门实验科学,下面是一些炼丹心得,后面会不断补充. 有问题的地方,也请大家指正.
  1. 参数初始化,下面几种方式,随便选一个,结果基本都差不多.

    1. uniform 
      W = np.random.uniform(low=-scale, high=scale, size=shape)
    2. glorot_uniform 
      scale = np.sqrt(6. / (shape[0] + shape[1])) 
      np.random.uniform(low=-scale, high=scale, size=shape)
    3. 高斯初始化: 
      w = np.random.randn(n) / sqrt(n),n为参数数目 
      激活函数为relu的话,推荐 
      w = np.random.randn(n) * sqrt(2.0/n)
    4. svd ,对RNN效果比较好,可以有效提高收敛速度.
  2. 数据预处理方式

    1. zero-center ,这个挺常用的.
      X -= np.mean(X, axis = 0) # zero-center 
      X /= np.std(X, axis = 0) # normalize
    2. PCA whitening,这个用的比较少.
  3. 训练技巧

    1. 要做梯度归一化,即算出来的梯度除以minibatch size
    2. clip c(梯度裁剪): 限制最大梯度,其实是value = sqrt(w1^2+w2^2….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15
    3. dropout对小数据防止过拟合有很好的效果,值一般设为0.5,小数据上dropout+sgd效果更好. dropout的位置比较有讲究, 对于RNN,建议放到输入->RNN与RNN->输出的位置.关于RNN如何用dropout,可以参考这篇论文:arxiv.org/abs/1409.2329
    4. adam,adadelta等,在小数据上,我这里实验的效果不如sgd,如果使用sgd的话,可以选择从1.0或者0.1的学习率开始,隔一段时间,在验证集上检查一下,如果cost没有下降,就对学习率减半. 我看过很多论文都这么搞,我自己实验的结果也很好. 当然,也可以先用ada系列先跑,最后快收敛的时候,更换成sgd继续训练.同样也会有提升.
    5. 除了gate之类的地方,需要把输出限制成0-1之外,尽量不要用sigmoid,可以用tanh或者relu之类的激活函数.
    6. rnn的dim和embdding size,一般从128上下开始调整. batch size,一般从128左右开始调整.batch size合适最重要,并不是越大越好.
    7. word2vec初始化,在小数据上,不仅可以有效提高收敛速度,也可以可以提高结果.
    8. 尽量对数据做shuffle
    9. LSTM 的forget gate的bias,用1.0或者更大的值做初始化,可以取得更好的结果,来自这篇论文:jmlr.org/proceedings/pa, 我这里实验设成1.0,可以提高收敛速度.实际使用中,不同的任务,可能需要尝试不同的值.
  4. Ensemble: 论文刷结果的终极核武器,深度学习中一般有以下几种方式

    1. 同样的参数,不同的初始化方式
    2. 不同的参数,通过cross-validation,选取最好的几组
    3. 同样的参数,模型训练的不同阶段
    4. 不同的模型,进行线性融合. 例如RNN和传统模型.
下面的网站也有一些总结:
http://blog.csdn.net/chenzhi1992/article/details/52905569
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值