Markov Chain Monte Carlo 和 Gibbs Sampling算法

本文介绍了马尔科夫链的基本概念,包括非周期马氏链和收敛定理,并详细讲解了用于采样困难分布的Metropolis-Hastings算法及其采样流程。接着,讨论了Gibbs Sampling,一种保证每次采样都能使用的MCMC方法,特别适合处理贝叶斯推理中的条件概率。文章还提及了采样过程中的注意事项,如初始化、burn-in period和参数近似。
摘要由CSDN通过智能技术生成

Welcome To My Blog

一.蒙特卡洛模拟

蒙特卡洛模拟(Monte Carlo Simulation)是随机模拟的别名,关于随机模拟的一个重要的问题就是:给定一个概率分布p(x),如何生成它的样本?
一般而言,均匀分布Uniform(0,1)的样本容易生成,而常见的概率分布(连续或离散)都可以基于均匀分布的样本生成,例如正态分布可以通过Box-Muller变换得到.
但是像p(x,y,z)这样甚至更高维度分布的样本很难生成,而MCMC(Markov Chain Monte Carlo)和Gibbs Sampling算法就是解决这个问题的.让我们从马尔科夫链(Markov Chain)说起

二.马尔科夫链

马尔科夫链(Markov Chain),简称马氏链,

定义:

1.png
含义:当前所处状态只和前一个状态有直接联系

非周期马氏链的引出

  • 对于一个有限状态马氏链,如果状态i是经过有限步转移后迟早要返回的状态,则称状态i是常返态.(即若i→j,则j→i;换句话说,从i能到j,一定可以从j到i,i是常返态,j也是常返态;常返态’链’上的状态是常返态),不是常返态的状态称为过渡态(如果k是过渡态,则从k出发后无法再回到k)
  • 如果马氏链中任何两个状态互通(互通的两个状态是常返态),则称马氏链为不可约的
  • 一个有限马氏链按照互通关系所分成的子集中的状态要么是常返的,称为常返类;要么是过渡的,称为过度类.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值