一.蒙特卡洛模拟
蒙特卡洛模拟(Monte Carlo Simulation)是随机模拟的别名,关于随机模拟的一个重要的问题就是:给定一个概率分布p(x),如何生成它的样本?
一般而言,均匀分布Uniform(0,1)的样本容易生成,而常见的概率分布(连续或离散)都可以基于均匀分布的样本生成,例如正态分布可以通过Box-Muller变换得到.
但是像p(x,y,z)这样甚至更高维度分布的样本很难生成,而MCMC(Markov Chain Monte Carlo)和Gibbs Sampling算法就是解决这个问题的.让我们从马尔科夫链(Markov Chain)说起
二.马尔科夫链
马尔科夫链(Markov Chain),简称马氏链,
定义:
含义:当前所处状态只和前一个状态有直接联系
非周期马氏链的引出
- 对于一个有限状态马氏链,如果状态i是经过有限步转移后迟早要返回的状态,则称状态i是常返态.(即若i→j,则j→i;换句话说,从i能到j,一定可以从j到i,i是常返态,j也是常返态;常返态’链’上的状态是常返态),不是常返态的状态称为过渡态(如果k是过渡态,则从k出发后无法再回到k)
- 如果马氏链中任何两个状态互通(互通的两个状态是常返态),则称马氏链为不可约的
- 一个有限马氏链按照互通关系所分成的子集中的状态要么是常返的,称为常返类;要么是过渡的,称为过度类.
- 一