牛顿、拟牛顿法以及其他优化方法的R实现

本文介绍了牛顿法和拟牛顿法在求解无约束最优化问题中的应用,特别是R语言中的实现。牛顿法通过二阶泰勒展开迭代求解极小点,而拟牛顿法则解决了计算海塞矩阵逆的复杂性问题。文章还提及了牛顿-拉夫森方法,并列举了如Nelder-Mead、BFGS、CG、L-BFGS-B和SANN等其他优化方法,用于处理不同类型的最优化问题。
摘要由CSDN通过智能技术生成

\quad 牛顿法(Newton method)和拟牛顿法(quasi Newton method)是求解无约束最优化问题的常用方法,有收敛速度快的优点。

1. 牛顿法

考虑无约束最优化问题
m i n x ∈ R n f ( x ) min_{x\in R^n} f(x) minxRnf(x)
其中 x ∗ x^* x为目标函数极小点。
假设 f ( x ) f(x) f(x)有二阶连续偏导数,若第k次迭代值为 x ( k ) x^{(k)} x(k),则可将 f ( x ) f(x) f(x) x ( k ) x^{(k)} x(k)附近进行二阶泰勒展开:
f ( x ) = f ( x ( k ) ) + g k T ( x − x ( k ) ) + 1 2 ( x − x ( k ) ) T H ( x ( k ) ) ( x − x ( k ) ) f(x)=f(x^{(k)})+g_k^T(x-x^{(k)})+\frac{1}{2}(x-x^{(k)})^TH(x^{(k)})(x-x^{(k)}) f(x)=f(x(k))+gkT(xx(k))+21(xx(k))TH(x(k))(xx(k))
这里, g k = g ( x ( k ) ) = ▽ f ( x ( k ) ) g_k=g(x^{(k)})=\bigtriangledown f(x^{(k)}) gk=g(x(k))=f(x(k)) f ( x ) f(x)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值