前言
在了解时间复杂度之前,先向大家科普一个大环境知识。
当今时代的科学技术,让计算机在面对执行指令是可以以一个夸张的速度进行执行,也就是我们口中对于计算机设备的频率,下面引入一段代码:
void test01()
{
int begin = clock();
int x = 0;
for (int i = 0; i < 100000000; i++)
{
++x;
}
int end = clock();
int time = end - begin;
printf("x = %d\n", x);
printf("time = %d ms\n",time);
}
在如上代码中,我们看到即使我们需要将这个循环执行一亿次,但在计算机设备的加持下,不到一秒就出了结果,可见其执行效率之高。
一. 时间复杂度
1.1 时间复杂度的概念
时间复杂度的定义:
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
更加通俗的来讲就是:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
1.2 时间复杂度如何计算
我们照样以实例作为参考:
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
我们将它转化为一个数学表达式
F(N) = N² + 2 × N + 10
在计算时间复杂度时我们将数学表达式中的影响最大的部分摘下来,并将复杂度写作O( N² )
这时就会有同学问了,上面不是讲到复杂度时基本语句的执行次数的问题吗?为什么上面代码中 count 和 M的定义语句不添加到其中呢?
在前言中我们讲到,如今的计算机设备执行速率已经十分快速,对于其中的一些细枝末节的语句执行次数我们可以忽略不计,除非他的数量大到可以占到总体的一半以上,否则不添加到计算当中,此时我们就可以引入数学中的极限思想,当上述表达式中N趋近于无穷时,看其最高阶项,其他的在最高阶面前都可忽略不计,因为它太太太小了。
1.3 时间复杂度如何表示
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。
二. 常见复杂度举例
示例 | 复杂度 | 名称 |
---|---|---|
5201314 | O( 1 ) | 常数阶 |
3n + 4 | O( n ) | 线性阶 |
3n^2 + 4n + 5 | O( n² ) | 平方阶 |
3 log( 2 ) n + 4 | O( log n ) | 对数阶 |
3n*log( 2 ) n + 4 | O( n*log n ) | nlogn阶 |
n^3 + n^2 + 4 | O( n^3 ) | 立方阶 |
2^n | O( 2^n ) | 指数阶 |
有意思的是,在数据结构学习中,复杂度log N一般代表的都是以 2 为底的对数,只有当底数为 2 时才可以省略,反之不可以省略,但不是二的情况很少出现,因为其实用价值并不高。
三. 结语
十分感谢您观看我的原创文章。
本文主要用于个人学习和知识分享,学习路漫漫,如有错误,感谢指正。
如需引用,注明地址。