卷积层和池化层的意义
一副完整的图像所包含的信息太多,容易产生信息的冗余,而且信息的量也很大。
假如有一幅1000*1000的图像,如果把整幅图像作为向量,则向量的长度为1000000(106)。在假如隐含层神经元的个数和输入一样,也是1000000;那么,输入层到隐含层的参数数据量有1012,妈呀,什么样的机器能训练这样的网络呢。所以,我们还得降低维数,同时得以整幅图像为输入(人类实在找不到好的特征了)。于是,牛逼的卷积来了。接下来看看卷积都干了些啥。(引用自博客:https://www.cnblogs.com/wj-1314/p/9593364.html)
1 卷积层
局部感知:人的大脑识别图片的过程中,并不是一下子整张图同时识别,而是对于图片中的每一个特征首先局部感知,然后更高层次对局部进行综合操作,从而得到全局信息。 (后面详解)
池化(Pooling):也称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。主要有:
Max Pooling:最大池化
Average Pooling:平均池化