神经网络:卷积层和池化层

🌞欢迎莅临我的个人主页👈🏻这里是我专注于深度学习领域、用心分享知识精粹与智慧火花的独特角落!🍉

🌈如果大家喜欢文章,欢迎:关注🍷+点赞👍🏻+评论✍🏻+收藏🌟,如有错误敬请指正!🪐

🍓“请不要相信胜利就像山坡上的蒲公英一样唾手可得,但是请相信生活中总有美好值得我们全力以赴,哪怕粉身碎骨!”🌹

目录

卷积层

池化层

代码实践


       学习之前我们先要了解卷积和池化间的联系——首先卷积用来提取图像特征,但是提取后图片的数据量依旧很大,所以需要通过池化来降低特征,池化没有可学习的参数,它仅仅是对输入的聚合操作。通过减小特征图的尺寸,池化层可以减少后续层的参数数量,从而降低模型的复杂度和计算量。

卷积层

       卷积层(Convolutional Layer)是神经网络中的一种基本层,主要用于图像处理和计算机视觉任务中。它通过对输入图像进行多个卷积核的卷积运算,提取出图像中的特征,生成输出特征图。

       一个卷积层通常由多个卷积核、偏置、激活函数和池化层等组成。其中,卷积核是该层的核心部分,它将输入图像中的每个像素与自身权重进行点乘,再加上偏置项,生成单个输出值。多个卷积核可以提取不同的特征,例如边缘、纹理、颜色等,从而捕获图像中更高级的结构和特征。

 我们先通过官方文档看下比较正规的卷积层说明,卷积层的使用

nn.Conv2d

Applies a 2D convolution over an input signal composed of several input planes.

这里我们重点介绍 nn.Conv2d ,即二维卷积,需要注意这里的 nn.Conv2d 和 nn.conv2d 的区别,nn.Conv2d 是一个类,可以创建可学习的卷积层,而 nn.conv2d 是一个函数,用于执行卷积操作。通常情况下,建议使用 nn.Conv2d 类来创建卷积层,因为它更加灵活,并且可以与其他模块一起使用。而 nn.conv2d 可以在需要时用作函数调用。

nn.Conv2d 相关参数如下:

  • in_channels:输入图像的通道数
  • out_channels:输出图像的通道数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

30天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值