文章目录:
标准形:不唯一
规范形:唯一
一:二次型
二次型:对称矩阵
A:实对称矩阵
二次型的矩阵表示:f(X1,X2....Xn)=x^T*A*x 什么是二次型:只是含有二次方项的多项式
(1)一个二次型对应着一个对称矩阵
若A是一个实对称矩阵,且f = X^TAX,则称A为二次型f对应的对称矩阵
(2)二次型f在正交变换下的标准形的各项系数为A的特征值.
-
二次型衔接 合同和相似
二:标准形
只有平方项,没有混合项
二次型化为标准形
二次型化为标准形:配方法(含有平方、不含有平方)、正交变换法
1.配方法
不含平方:令的时候行列式可逆就行
2.正交变换法
第一步:|λE-A| 求出特征值,再求对应的特征向量
第二步:正交化、单位化
第三步:得到正交矩阵Q
✍正交变换x=Qy
✍f=x^TAx => y^T(Q^T A Q)y => 标准形
✌Q^T A Q = 特征值对角矩阵= Λ
三:规范形
首先得是标准形,-1、1、0系数