线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结

1.二次型

1.1 二次型、标准型、规范型、正负惯性指数、二次型的秩

二次型:

二次型中的矩阵A是实对称矩阵,实对称矩阵天然的可相似对角化。

在这里插入图片描述

小补充:实对称矩阵,意思是矩阵中的元素都是实数,不是虚数之类的。而且是对称矩阵。对称矩阵意味着AT=A

如何证明一个矩阵是二次型矩阵?(2013年真题)
首先证明矩阵A,满足XTAX=二次型,形式正确
其次证明矩阵A是对称矩阵,即AT=A

解释说明:
二次型其实是一个由二次的项组成的式子
它可以写成XTAX的形式,其中A矩阵是对称阵
其中A矩阵是怎么写出来的?
1.A的对角线元素是由xn的平方决定,a11是x12前的系数,a22是x22前的系数,以此类推
2. 对称位置a12,a21 这种由混合项x1x2的系数决定,以此类推

标准型:

在这里插入图片描述

解释说明:
标准型就是去掉了混合项,二次型矩阵A变成了对角矩阵
注意:一个二次型的标准型并不唯一,在选择题中,我们求出的标准型和答案给出的标准型不一定一样,但是正负项数肯定一样,即规范型一样。

规范型:

规范型就是在标准型的基础上,平方项的次数是1或-1或0
规范型能确定什么?
不同的标准型能被化成相同的规范型的形式。
所以说,规范型能确定的东西有限,我们只能通过规范型得到正负系数,正负惯性指数

正惯性指数 负惯性指数:

在这里插入图片描述

解释说明:
正惯性指数就是标准型中平方项系数为正数的个数
负惯性指数就是标准型中平方项系数为负数的个数
正惯性指数 负惯性指数是对标准型而言的,只有处理成标准型才能看见正负惯性指数

二次型的秩:

二次型的秩就是二次型矩阵A的秩
r(f)=r(A)

1.2 坐标变换

坐标变换,其实我们可以理解为换元,在高等数学的学习中,我们经常利用换元法将复杂的式子通过换元来变成简单的式子,在二次型中也同样如此,
x=Cy的形式换元,重要的是C矩阵 |C|≠0

在这里插入图片描述

1.3 合同

如CTAC=B,C可逆,称矩阵A和B合同

合同的内涵就是:做一组相同的行列变换,比如做倍加合同变换,第一行加到第一行,那么第一列也要加到第二列,一组操作才算一个完整的合同变换。

合同的性质:

  1. A合同于A
  2. A合同于B,则B合同于A
  3. 合同具有传递性,A合同于B,B合同于C,A合同于C
  4. 一个方阵合同于一个对称矩阵,那么它也是对称的。

假如两个矩阵合同,有什么性质?

  • 合同矩阵的秩相同
  • 正负惯性指数相同

二次型与正交变换与合同之间的联系:
在这里插入图片描述
补充:通过坐标变换,可以得到A合同于一个对角矩阵

1.4 正交变换化为标准型

核心:通过求二次型矩阵A的特征值,就可得出二次型的标准型。通过求二次型矩阵A的特征向量,得到坐标变换x=Qy,其中Q是由A的特征向量经过施密特正交化组成的。

在这里插入图片描述

二次型化标准型就转变成了求特征值求特征向量的问题。

1.5 可逆线性变换和正交变换

在具体问题中,有如下的经典问题
求可逆线性变换x=By,将f(x1,x2,x3)化为标准形
求正交变换x=Qy,将二次型f(x1,x2,x3)化为标准形

配方法化为标准形,得到的是可逆线性变换
正交变换法,得到的正交变换,是一种特殊的可逆线性变换
配方法和正交变换法得到的标准形不同
化为规范型不能用正交变换法,规范型是唯一的。

类型可逆线性变换正交变换
P可逆矩阵正交矩阵
A与对角阵的关系合同合同且相似
A特征值与对角阵的特征值不同相同

表格第二条最为重要,有两个二次型,f和g,可逆线性变换一般来说是,f和g合同但不相似,可以做可逆线性变换将f转换为g,正交变换是指,f和g相似,f可以正交变换为g

1.6 二次型化标准形,二次型化规范形的联系思考

每一个二次型都可以化成标准形和规范形
不管是二次型化标准形还是二次型化规范型,都是通过CX=Y,通过可逆线性变换化成标准形或者规范形,意味着C必须是可逆的,这个C是不唯一的,也说明,可逆线性变换有多种。合同变换(正交变换)也是可逆线性变换的一种。

实例如下:
在这里插入图片描述

1.8 两个二次型联系的思考

思考一:
假如有两个二次型f和g,对应的二次型矩阵A和B:
f能通过可逆线性变换变为g,意味着A和B合同,它们的正负惯性指数相同,它们有相同的规范型。
f能通过正交变换变为g,意味着A和B相似。

思考二:
假如A和B相似,意味着,二次型f和g有相同的标准型和规范型。

问题实例抽象:
假如有两个二次型f和g,对应的二次型矩阵A和B:
f能通过可逆线性变换x=py变为g,问你这个可逆矩阵p是什么?

从上面的问题分析可知,A和B合同,有相同的规范型,所以规范型就是中间桥梁。
在这里插入图片描述

1.9 对于配方法问题的深入思考

在这里插入图片描述

2.二次型的主要定理

定理1:
见二次型与正交变换与合同之间的联系的结论

定理2:
任一个二次型XTAX都存在坐标变换x=cy化成标准型

3.正定二次型与正定矩阵

n元二次型f(x1,x2…)=xTAx,若对任意的x[x1,x2,…,xn]T≠0,均有xTAx>0,则称f为正定二次型,A为正定矩阵。

正定二次型的充要条件:
1.定义法 任意x, xTAx>0
2.f的正惯性指数p=n
3.A的特征值λi均>0
4.A的全部顺序主子式均>0

正定二次型的必要条件:
1.aii>0
2.|A|>0

正定矩阵的充要条件:
矩阵A的特征值全大于0---->单向可推出,|A|>0
顺序主子式大于0

在判断是否是正定矩阵的题目中,常用充要条件是2-4或必要条件1得出

补充一个小知识:反对称矩阵AT=-A

4.重难点题型总结

4.1 配方法将二次型化为标准型

配方法将含有平方项的二次型化为标准型:

一步一步来,先配x1,再配x2,这样就能防止|c|=0,使得坐标变换失败

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.4

配方法将不含有平方项的二次型化为标准型:
在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.5

4.2 正交变换法将二次型化为标准型

在写出二次型矩阵出过程中,非常值得注意的是平方项不用除以2,混合项除以2

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.6-6.7

4.3 规范型确定取值范围问题

在这里插入图片描述

4.4 已知两个二次型f和g,求正否能通过正交变换使得f转换为g

思路:
相似的传递性 合同的传递性
f相似且合同于一个对角阵,g也相似且合同于一个对角阵,他俩相似且合同的对角阵是同一个对角阵,那么f与g相似且合同,所以必有一个正交变换能使得f可以变成g。
综上本质就是,f和g有相同的特征值
一些细节:x=Q1z 得到对角阵,y=Q

例题 4.7为该问题的完全解答

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.9

4.5 由已知条件,反求二次型f(x1,x2…)的表达式(反求矩阵问题)

思路如下:
求二次型表达式,也就是求二次型矩阵A,也就是方程组应用那节中的反求矩阵问题,反求矩阵问题两大核心利器,一是矩阵乘法,二是相似
在这里插入图片描述

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.13

4.6 【经典例题】判断两个矩阵是否相似,是否合同

大观:
如果两个矩阵都是实对称矩阵,它们天然的满足可以相似对角化,所以

  • A合同于B⇔A,B特征值的正、负号个数相同
  • A相似于B ⇔A,B的特征值相同

如果两个矩阵不是实对称矩阵,那么判断相似有3种方法

  • 1.根据必要条件排除
    • 主要看秩是否相同,如果秩判断不了,改造矩阵为A+kE或者A-kE,因为A相似于B,A+kE相似于A-kE
  • 2.判断是否相似对角化同一个对角矩阵
    • 判断是否可以相似对角化,然后计算特征值,判断是否相似于同一个对角矩阵
  • 3.利用定义
    • 手动进行初等行变换列变换判断相似,进行一组或多组行列同时变换判断合同。

一些必要条件说明:
两个矩阵合同:意味着

  • 行列式正负相等
  • 正负惯性指数相同
  • 矩阵的秩序相同

4.7 求正惯性指数_结合正定二次型定义和非齐次线性方程组

正定二次型的定义 x≠0,XTAX>0,则说明A是正定矩阵。正惯性指数=n

在这里插入图片描述

4.7 【真题改编】二次型f和g,做可逆线性变换将f转换为g,做正交变换将f转换为g

改编自2021年考研数学一

问题分析:
明确f和g如果能存在可逆(非正交)线性变换,f和g是合同的,正负惯性指数是相等的(充要条件),特征值是不同的,为什么特意说了非正交?因为正交是一种特殊的可逆线性变换。
明确f和g如果能存在正交变换,f和g是相似的,特征值是相同的。
该问题中存在未知系数a,也就意味着,a取不同值时,存在不同的情况,如仅合同或合同且相似。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.8 二次型f=0的全部解问题

常规两种方法:

  • 配方法
  • 正交变换法

在这里插入图片描述

4.9 已知矩阵A的正交变换的标准型,求A*的正交变换的标准形

在这里插入图片描述

### 酉矩阵的二次型转换为标准型 对于给定的一个酉矩阵 \( U \),以及相应的二次型 \( X^*UX \),其中 \( X \) 是列向量,\( * \) 表示共轭转置。为了将此二次型转化为标准形式,可以通过对角化过程来实现。 由于酉矩阵具有特殊的性质——其特征向量构成一组正交基底,并且这些特征向量也是单位长度的,这意味着存在一个由该组特征向量组成的酉矩阵 \( V \)[^1]。通过这个酉矩阵 \( V \),可以完成如下操作: \[ U = VDV^* \] 这里 \( D \) 是包含 \( U \) 的所有特征值的对角矩阵;而 \( V^*V = I \),表示 \( V \) 和它的共轭转置相乘得到单位矩阵。因此,当我们将原始变量替换为新的坐标系下的表达式时, \[ Y = VX \] 则原二次型变为: \[ (VX)^*(VDV^*)(VX)=Y^*DY=\sum_{i=1}^{n}\lambda_i|y_i|^2 \] 这表明新坐标的各个分量之间相互独立,从而实现了标准化的过程[^3]。 在这个过程中,关键是找到合适的酉矩阵 \( V \),它是由原来的酉矩阵 \( U \) 的特征向量组成。一旦找到了这样的 \( V \),就可以很容易地写出上述的标准形式。 ```python import numpy as np def convert_to_standard_form(U): eigenvalues, eigenvectors = np.linalg.eig(U) # 构建D和V D = np.diag(eigenvalues) V = eigenvectors return D, V U = ... # 定义具体的酉矩阵 D, V = convert_to_standard_form(U) print("Diagonal matrix D:\n", D) print("\nUnitary transformation matrix V:\n", V) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二叉树果实

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值