线性代数:二次型

二次型

此为笔者考研复习拙见,如有错误,望各位读者不惜笔墨不啬赐教,感激不尽!


一、二次型的概念及其标准型

基本概念

二次型及其表示

含有 n 个变量 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn 的二次齐次函数 f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + ⋯ + 2 a 12 x 1 x 2 + ⋯ + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+\cdots+2a_{12}x_1x_2+\cdots+2a_{n-1,n}x_{n-1}x_n f(x1,x2,,xn)=a11x12++2a12x1x2++2an1,nxn1xn 称为 n 元二次型

二次型也可以写成 f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j , a i j = a j i f(x_1,x_2,\cdots,x_n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j,a_{ij}=a_{ji} f(x1,x2,,xn)=i=1nj=1naijxixj,aij=aji 的形式

x = ( x 1 , x 2 , ⋯   , x n ) T x=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,,xn)T A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n ,则 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx A T = A A^T=A AT=A

A A A 是二次型矩阵, r ( A ) \mathrm r(A) r(A) 是二次型矩阵的秩, A A A 是实对称矩阵


二次型的标准型

二次型只含有平方项时,即 f ( x 1 , x 2 , ⋯   , x n ) = d 1 x 1 2 + ⋯ + d n x n 2 f(x_1,x_2,\cdots,x_n)=d_1x_1^2+\cdots+d_nx_n^2 f(x1,x2,,xn)=d1x12++dnxn2 ,称为二次型的标准型


二次型的标准化

二次型可以通过坐标变换 x = C y ( C 可逆 ) x=Cy(C可逆) x=Cy(C可逆) 化为标准型

x T A x = ( C y ) T A ( C y ) = y T ( C T A C ) y = y T Λ y = d 1 y 1 2 + ⋯ + d n y n 2 x^TAx=(Cy)^TA(Cy)=y^T(C^TAC)y=y^T\Lambda y=d_1y_1^2+\cdots+d_ny_n^2 xTAx=(Cy)TA(Cy)=yT(CTAC)y=yTΛy=d1y12++dnyn2

另一方面,由于 A A A 是实对称矩阵,那么存在正交变换 x = Q y ( Q 为正交阵 ) x=Qy(Q为正交阵) x=Qy(Q为正交阵) x T A x x^TAx xTAx 标准化,即 x T A x = y T Λ y = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 x^TAx=y^T\Lambda y=\lambda_1 y_1^2 + \lambda_2y_2^2+\cdots+\lambda_ny_n^2 xTAx=yTΛy=λ1y12+λ2y22++λnyn2


惯性指数:在标准型中,正平方项的个数称为正惯性指数,记为 p p p,负平方项的个数记作 q q q 。二次型经 可逆 坐标变换后 正负惯性指数不变且 p + q = r ( f ) = r ( A ) p+q=\mathrm{r}(f)=r(A) p+q=r(f)=r(A)


二次型的规范性

若 n 元二次型 x T A x x^TAx xTAx 经过坐标变换 x = C y x=Cy x=Cy 化为标准型, x T A x = d 1 y 1 2 + ⋯ + d p y p 2 − d p + 1 y p + 1 2 − ⋯ − d p + q y p + q 2 x^TAx=d_1y_1^2+\cdots+d_py_p^2-d_{p+1}y_{p+1}^2-\cdots-d_{p+q}y_{p+q}^2 xTAx=d1y12++dpyp2dp+1yp+12dp+qyp+q2

其中 d i > 0 ( i = 1 , 2 , ⋯   , p + q ) d_i>0(i=1,2,\cdots,p+q) di>0(i=1,2,,p+q) ,再用坐标变换

{ y 1 = 1 d 1 z 1 y 2 = 1 d 2 z 2 ⋯ y p + q = 1 d p + q z p + q y p + q + 1 = z p + q + 1 ⋯ y n = z n \left\{\begin{aligned}&y_1=\frac {1} {\sqrt{d_1}}z_1\\&y_2=\frac {1} {\sqrt{d_2}}z_2\\&\cdots\\&y_{p+q}=\frac {1} {\sqrt{d_{p+q}}}z_{p+q}\\&y_{p+q+1}=z_{p+q+1}\\&\cdots\\&y_n=z_n \end{aligned}\right. y1=d1 1z1y2=d2 1z2yp+q=dp+q 1zp+qyp+q+1=zp+q+1yn=zn

则二次型化为 z 1 2 + ⋯ + z p 2 − z p + 1 2 − ⋯ − z p + q 2 z_1^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_{p+q}^2 z12++zp2zp+12zp+q2 ,称为 二次型的规范型,二次型的规范型唯一,但标准型不唯一


矩阵合同

A A A B B B 为 n 阶实对称矩阵,存在可逆矩阵 C C C 使得 C T A C = B C^TAC=B CTAC=B 则称矩阵 A A A B B B 合同

A 、 B 合同 ⇔ p A = p B , q A = q B A、B合同 \Leftrightarrow p_A=p_B,q_A=q_B AB合同pA=pB,qA=qB


坐标变换

形如 { x 1 = c 11 y 1 + c 12 y 2 + c 13 y 3 , x 2 = c 21 y 1 + c 22 y 2 + c 23 y 3 , x 1 = c 31 y 1 + c 32 y 2 + c 33 y 3 . \left\{\begin{aligned}&x_1=c_{11}y_1+c_{12}y_2+c_{13}y_3,\\&x_2=c_{21}y_1+c_{22}y_2+c_{23}y_3 ,\\&x_1=c_{31}y_1+c_{32}y_2+c_{33}y_3.\end{aligned}\right. x1=c11y1+c12y2+c13y3,x2=c21y1+c22y2+c23y3,x1=c31y1+c32y2+c33y3. 称为坐标变换,记作 x = C y x=Cy x=Cy 其中 C = ( c i j ) 3 × 3 C=(c_{ij})_{3\times 3} C=(cij)3×3 C C C 可逆

坐标变换一定要注意可逆!


二次型化标准型的方法

  • 正交变换
  1. A A A 的特征值和对应特征向量
  2. 对所有特征向量进行施密特正交化和单位化,得 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn
  3. Q = ( η 1 , η 2 , ⋯   , η n ) Q=(\eta_1,\eta_2,\cdots,\eta_n) Q=(η1,η2,,ηn) x = Q y x=Qy x=Qy 为正交变换
  4. 写出标准型 λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 \lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 λ1y12+λ2y22++λnyn2

  • 配方法

配方法注意一次只配一个字母,写成完全平方的形式后再作坐标变换,请看下例

f ( x 1 , x 2 , x 3 ) = x 1 2 + 5 x 2 2 + 5 x 3 2 + 2 x 1 x 2 − 4 x 1 x 3 = ( x 1 + x 2 − 2 x 3 ) 2 + 4 x 2 2 + 4 x 2 x 3 + x 3 2 ( 只配 x 1 ) = ( x 1 + x 2 − 2 x 3 ) 2 + ( 2 x 2 − x 3 ) 2 ( 只配 x 2 ) \begin{aligned}f(x_1,x_2,x_3)&=x_1^2+5x_2^2+5x_3^2+2x_1x_2-4x_1x_3\\&=(x_1+x_2-2x_3)^2+4x_2^2+4x_2x_3+x_3^2(只配x_1)\\&=(x_1+x_2-2x_3)^2+(2x_2-x_3)^2(只配x_2) \end{aligned} f(x1,x2,x3)=x12+5x22+5x32+2x1x24x1x3=(x1+x22x3)2+4x22+4x2x3+x32(只配x1)=(x1+x22x3)2+(2x2x3)2(只配x2)

{ y 1 = x 1 + x 2 − 2 x 3 y 2 = 2 x 2 + x 3 y 3 = x 3 \left\{\begin{aligned}&y_1=x_1+x_2-2x_3\\&y_2=2x_2+x_3\\&y_3=x_3 \end{aligned} \right. y1=x1+x22x3y2=2x2+x3y3=x3 反解 x 向量就可以得到矩阵 C C C


注:二次型 f = x T A x f=x^TAx f=xTAx A A A 的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn 中最大的为 λ ∗ \lambda^* λ ,最小的为 λ ∗ \lambda_* λ ,且 x T x = M > 0 x^Tx=M>0 xTx=M>0

M λ ∗ ≤ x T A x ≤ M λ ∗ M\lambda_* \le x^TAx \le M\lambda^* MλxTAxMλ ,即在条件 x T x = M > 0 x^Tx=M>0 xTx=M>0 下能够确定二次型的界


二、正定二次型与正定矩阵

基本概念

设二次型 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx ,( A A A 为对称矩阵) ,若对任意 x ≠ 0 x\neq 0 x=0 都有 x T A x > 0 x^TAx>0 xTAx>0 ,则称二次型正定,称 A A A 为正定矩阵


正定二次型的判别

  1. 二次型 x T A x x^TAx xTAx 正定 ⇔ \Leftrightarrow A A A 的特征值全大于 0
  2. 二次型 x T A x x^TAx xTAx 正定 ⇔ \Leftrightarrow A A A 的顺序主子式全大于 0
  3. A A A 为实对称矩阵,则 A A A 正定 ⇔ \Leftrightarrow A A A 合同于单位矩阵 E E E
  4. A A A 为实对称矩阵,则 A A A 正定 ⇔ \Leftrightarrow 正惯性指数 p = n = r ( A ) p=n=\mathrm r(A) p=n=r(A)
  5. A A A 为实对称矩阵,则 A A A 正定 ⇔ \Leftrightarrow 存在可逆阵 P P P A = P T P A=P^TP A=PTP
  6. 二次型 x T A x x^TAx xTAx 正定的必要条件是 a i i > 0 ( i = 1 , 2 , ⋯   , n ) a_{ii}>0(i=1,2,\cdots,n) aii>0(i=1,2,,n)
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值