开始学习tensorflow了,记录一下
提前说一下前面我已经安装好了nvidia的驱动以及 cuda cudnn,没有安装的话需要根据文档安装 cuda文档地址 cudnn安装文档
下面的教程根据官方文档记录 文档地址,python3,
我安装的时候出现一个问题,解决方法是一定要安装cuda9.0 cuda9.1会有问题,tf暂时不支持
1. 安装libcupti-dev
libcupti-dev是cuda分析工具接口,要安装它需要先安装cuda-command-line-tools
sudo apt-get install cuda-command-line-tools
再将下面路径添加到环境变量中
vim /etc/sudo vim /etc/profile
# 将下面的添加到profile末尾
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}/usr/local/cuda/extras/CUPTI/lib64
# :wq 保存退出
source /etc/profile #让修改生效
安装libcupti-dev, 注意cuda Toolkit的版本要大于7.5
sudo apt-get install libcupti-dev
2. 安装tensorflow
官方提供了以下几种安装方法
- Virtualenv虚拟运行环境
- 原生pip安装
- Docker安装
- Anaconda安装
- 源码安装
官方好像推荐虚拟运行环境。然后我就选择通过虚拟运行环境安装吧。
2.1 安装virtualenv
下载相关软件
sudo apt-get install python-pip python-dev python-virtualenv # Python 2.7
sudo apt-get install python3-pip python3-dev python-virtualenv # Python 3.n选择这个
创建运行环境
(我在这里设置的安装目录是 ~/.venv/tensorflow
是这个,如果大家安装的不一样要注意一下换个路径)
mkdir ~/.venv/tensorflow
virtualenv --system-site-packages ~/.venv/tensorflow # 环境安装目录 python2下用这个
virtualenv --system-site-packages -p python3 ~/.venv/tensorflow #我这里环境安装目录 python3 下用这个
使虚拟运行环境生效(进入运行环境)
source ~/.venv/tensorflow/bin/activate
如果你的前缀变成了这样,那就安装好了
2.2 安装tensorflow-gpu版本
很简单一句话
pip3 install --upgrade tensorflow-gpu # for Python 3.n and GPU
另外官方还提供其他版本的安装方法
pip install --upgrade tensorflow # for Python 2.7 cup 版本
pip3 install --upgrade tensorflow # for Python 3.n cpu版本
pip install --upgrade tensorflow-gpu # python3.7 GPU版本
接下来就是漫长的下载了
另外google还提供了url安装方式,安装失败的同学可以试下
ip3 install --upgrade \
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.7.0-cp34-cp34m-linux_x86_64.whl
如果还有问题,google提供了问题帮助 如果不行,百度吧。
2.3 验证是否安装成功
首先确保是在tensorflow的安装环境中(有前缀),然后随便一个位置创建一个py文件,输入以下文件
# Python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
如果输出
Hello, TensorFlow!
就好了!下面是我的运行结果。
我遇到的几个问题
- 要用cuda9.0。而我刚开始装的是9.1,会有问题
- 9.0的最低支持显卡驱动384,注意下载的驱动要高一点
- 运行的时候要设置为gpu为nvidia的,而非笔记本的集显。(小米笔记本air)