逻辑推理与数学归纳法

三个基本推理方法

推理,从几个已知前提得出结论的思维过程,主要有以下三种方法

1,演绎推理 deductive reasoning

用一般性前提(普遍公理,常识)去论证个别事务,得出特别结论
例如
一般性的大前提:人皆有一死
个别事务的小前提:释迦摩尼也是人
结论:释迦摩尼也会死

2,归纳推理 inductive reasoning

通过对多个具体案例和事实的观察得出普遍性的结论
例如
观察前提:火星没发现外星人存在过的证据。太阳系内没发现外星人存在过的证据。我们在银河系内目前的探索也没有发现有外星人存在的证据。
结论:宇宙没有外星人

3,溯因推理 abductive reasoning

观察某个事实或结果,得出最能解释此事的理论或原因
观察前提:通过考古挖掘,我们知道在大约6600万年前,一度统治地球两亿年的恐龙突然灭绝了
结论:它们的灭绝缘于一颗陨石撞击了地球

演绎推理是强逻辑推理,能保证结论的正确性。而归纳推理与溯因推理的逻辑并不严谨,只能保证结论的合理性。

归纳推理的观察样本越多,越能提高合理性。溯因推理得出最佳结论前往往需要多次推理排除掉其他有可能的解释。

数学归纳法

归纳推理的一个问题是给定的观察前提是有限的,当面对无限的对象或大到无法查尽的样本数量时,只能进行概率推理。而数学归纳法利用整数的序数性质,通过递推技巧解决了这一问题,使之可以用于严格的数学证明。

例题


证明下面公式为真(n为正整数):
  1 + 2 + 3 + . . . + n = n ( n + 1 ) 2 , ( n ∈ Z + ) \ 1+2+3+...+n = \frac{n(n+1)}{2} , \footnotesize(n\in Z^+)  1+2+3+...+n=2n(n+1),(nZ+)

第一步,证明n=1时,等式成立

当n=1时,等式左边等于1 。等式右边等于1 。所以等式成立。

第二步,证明,假设n=m时等式成立,那么n=m+1时等式也成立

假设 1 + 2 + 3 + . . . + m = m ( m + 1 ) 2 1+2+3+...+m = \frac{m(m+1)}{2} 1+2+3+...+m=2m(m+1) 成立,我们称之为等式P(m)

等式P(m)两边加上(m+1),也既是n=m+1,它就变为了:

1 + 2 + 3 + . . . + m + ( m + 1 ) = m ( m + 1 ) 2 + ( m + 1 ) 1+2+3+...+m+(m+1) = \frac{m(m+1)}{2}+(m+1) 1+2+3+...+m+(m+1)=2m(m+1)+(m+1) ,我们称之为等式P(m+1)

对P(m+1)右边进行因式分解合并:

m ( m + 1 ) 2 + ( m + 1 ) = m ( m + 1 ) 2 + 2 ( m + 1 ) 2 = ( m + 2 ) ( m + 1 ) 2 = ( m + 1 ) ( m + 2 ) 2 = ( m + 1 ) [ ( m + 1 ) + 1 ] 2 \frac{m(m+1)}{2}+(m+1)=\frac{m(m+1)}{2}+\frac{2(m+1)}{2}=\frac{(m+2)(m+1)}{2}=\frac{(m+1)(m+2)}{2}=\frac{(m+1)[(m+1)+1]}{2} 2m(m+1)+(m+1)=2m(m+1)+22(m+1)=2(m+2)(m+1)=2(m+1)(m+2)=2(m+1)[(m+1)+1]

比较P(m)与P(m+1)的右手边:

m ( m + 1 ) 2 \frac{m(m+1)}{2} 2m(m+1)

( m + 1 ) [ ( m + 1 ) + 1 ] 2 \frac{(m+1)[(m+1)+1]}{2} 2(m+1)[(m+1)+1]

可见符号形式相同,符合求证公式的右手边形式 n ( n + 1 ) 2 \frac{n(n+1)}{2} 2n(n+1),那么我们已经证明了,假设n=m时等式成立,那么n=m+1时,等式也成立。

至此已可得出结论。由第一步得知,当n=1时,公式成真,由第二步得知,n=1+1=2时,公式也为真,同理,n=2+1=3时,公式也成立,以此类推,n为任意正整数时,公式皆成立。


再回到归纳推理的角度,上面求证过程中的最后一步既是成功考察了n=1,n=2,n=3…等无限的观察样本,且所有样本皆为真,因此可以得出严格的结论,证明了该公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值