Softmax代价函数求导过程

本文探讨了Softmax回归的Cost Function,并详细解析了其求导过程。介绍了Softmax函数中,输入x对应类别j的概率表示,以及对参数θj的偏导数计算。
摘要由CSDN通过智能技术生成

Cost Function

参考UFLDL的Softmax回归,SoftMax回归的的损失函数形为:

J(θ)=1Ni=1mj=1kI(y(i)=k)logeθTjx(i)kl=1eθTjx(i)(1.1)

有:

J(θ)==1Ni=1mj=1k(I(y(i)=k)(logeθTjx(i)log
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值