第二章:流密码(二元序列的伪随机性)

概述:

  • 二元序列的相关概念
  • 伪随机序列

二元序列的定义

定义:
在这里插入图片描述周期的性质:
在这里插入图片描述游程的定义:在这里插入图片描述游程的例子:在这里插入图片描述
自相关函数:在这里插入图片描述

伪随机序列

Golomb伪随机公设

3个随机性公设:

  1. 在序列的一个周期内,0和1的个数相差至多为1(说明{ a i a_i ai}中0与1出现的概率基本上相同)
  2. 在序列的一个周期内,长为 i i i的游程占游程总数的1/2i(i=1,2,…),且在等长的游程中0的游程个数和1的游程个数相等。(说明0与1在序列中每一个位置上出现的概率相同)
  3. 异相自相关函数是一个常数。这就意味着通过对序列与其平移后的序列作比较,不能给出其他任何信息。

伪随机序列的定义:在这里插入图片描述

伪随机序列的例子:

  • 周期为15的二元序列100010011010111
  • 0的个数为7,1的个数为8
  • 0的游程个数为4,1的游程个数为4
  • 异相自相关函数等于-1
  • 如图:在这里插入图片描述

伪随机序列还应满足的条件

  1. 周期p要足够大,如大于1050;
  2. 序列{ a i a_i ai}产生易于高速生成,其中i>=1;
  3. 当序列{ a i a_i ai}的任何部分暴露时,要分析整个序列,提取产生它的电路结构信息,在计算上是不可行的,称此为不可预测性。

注意:第三条决定了密码的强度,是流密码理论的核心。它包含了流密码要研究的许多主要问题,如线性复杂度、相关免疫性、不可预测性等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺旺的碎冰冰~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值