概述:
- 二元序列的相关概念
- 伪随机序列
二元序列的定义
定义:
周期的性质:
游程的定义:游程的例子:
自相关函数:
伪随机序列
Golomb伪随机公设
3个随机性公设:
- 在序列的一个周期内,0和1的个数相差至多为1(说明{ a i a_i ai}中0与1出现的概率基本上相同)
- 在序列的一个周期内,长为 i i i的游程占游程总数的1/2i(i=1,2,…),且在等长的游程中0的游程个数和1的游程个数相等。(说明0与1在序列中每一个位置上出现的概率相同)
- 异相自相关函数是一个常数。这就意味着通过对序列与其平移后的序列作比较,不能给出其他任何信息。
伪随机序列的定义:
伪随机序列的例子:
- 周期为15的二元序列100010011010111
- 0的个数为7,1的个数为8
- 0的游程个数为4,1的游程个数为4
- 异相自相关函数等于-1
- 如图:
伪随机序列还应满足的条件
- 周期p要足够大,如大于1050;
- 序列{ a i a_i ai}产生易于高速生成,其中i>=1;
- 当序列{ a i a_i ai}的任何部分暴露时,要分析整个序列,提取产生它的电路结构信息,在计算上是不可行的,称此为不可预测性。
注意:第三条决定了密码的强度,是流密码理论的核心。它包含了流密码要研究的许多主要问题,如线性复杂度、相关免疫性、不可预测性等等。