onCreate()方法中的参数Bundle savedInstanceState 的意义用法

        Activity中有一个名称叫onCreate的方法。该方法是在Activity创建时被系统调用,是一个Activity生命周期的开始。可是有一点容易被忽视,就是onCreate方法的参数saveInsanceState。一般的程序开发中,很少用到这个参数。
       onCreate方法的完整定义如下:
      public void onCreate(Bundle saveInsanceState){
                super.onCreate(saveInsanceState);
      }
    Bundle类型的数据与Map类型的数据相似,都是以key-value的形式存储数据的。
    从字面上看saveInsanceState,是保存实例状态的。实际上,saveInsanceState也就是保存Activity的状态的。那么,saveInsanceState中的状态数据是从何处而来的呢?下面我们介绍Activity的另一个方法saveInsanceState。
    onsaveInsanceState方法是用来保存Activity的状态的。当一个Activity在生命周期结束前,会调用该方法保存状态。

    如下所示:
    public void onSaveInsanceState(Bundle saveInsanceState){
       super.onSaveInsanceState(saveInsanceState);
   }
    在实际应用中,当一个Activity结束前,如果需要保存状态,就在onsaveInsanceState中,将状态数据以key-value的形式放入到saveInsanceState中。这样,当一个Activity被创建时,就能从onCreate的参数saveInsanceState中获得状态数据。
    状态这个参数在实现应用中有很大的用途,比如:一个游戏在退出前,保存一下当前游戏运行的状态,当下次开启时能接着上次的继续玩下去。再比如:电子书程序,当一本小说被阅读到第199页后退出了(不管是内存不足还是用户自动关闭程序),当下次打开时,读者可能已忘记了上次已阅读到第几页了,但是,读者想接着上次的读下去。如果采用saveInstallState参数,就很容易解决上述问题。

    使用例子:

import android.app.Activity;

 import android.os.Bundle;

 import android.util.Log 

public class AndroidTest extends Activity {

      private static final String TAG = "MyNewLog"; 

    @Override

    public void onCreate(Bundle savedInstanceState) {

        super.onCreate(savedInstanceState);

        // If an instance of this activity had previously stopped, we can get the original text it started with.

        if(null != savedInstanceState)

        {//因为Activity的生命周期原因 ,if 语句放着不一定能执行得到 应该结合实际情况

               int IntTest = savedInstanceState.getInt("IntTest");

               String StrTest = savedInstanceState.getString("StrTest");

         }

        setContentView(R.layout.main); 

    }

      @Override

    public void onSaveInstanceState(Bundle savedInstanceState) {

        // Save away the original text, so we still have it if the activity needs to be killed while paused.

      savedInstanceState.putInt("IntTest", 0);

      savedInstanceState.putString("StrTest", "savedInstanceState test");

      super.onSaveInstanceState(savedInstanceState);

       }

   @Override

    public void onRestoreInstanceState(Bundle savedInstanceState) {

      super.onRestoreInstanceState(savedInstanceState);

      int IntTest = savedInstanceState.getInt("IntTest");

      String StrTest = savedInstanceState.getString("StrTest");

      }

}

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值