bert后的比较有创新的xlnet和eletra模型通俗

Xlent 乱序排列模型,第一次听到这个名字的时候疑惑,乱序那不是句子都乱了吗,其实这正是利用了transform的跟token的位置无关性,但是句子中的token位置不同意义。所以每个token都带着位置embedding输入的。

1.双流注意力,content和Query,2个流共享1套自注意力机制的参数,因此不会造成参数的增加。

2.解释两个图,attention Mask很多人看不懂。每一行都是token 1,2,3,4。

图示的序列是3-2-4-1,

content stream

就是token1 可以看到所有的content

第二行 token2,可以看到token3,和token2,第三行token3可以看到token3,第四行 token4可以看到token3,token2,token4

query stream,就是预测attention 通过其他token预测,所以不能看到自己。所有中间的全是白色 mask掉了

这样做的目的,就是用content生成hidden vector 用query 来预测。

 

 

二 、Electra模型

优势充分训练,训练时间和训练样本大量减少。使用的时候只用Discriminator

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai君臣

学会的就要教给人

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值