XLNet——打破 BERT 局限的预训练语言模型

近年来,深度学习在自然语言处理(NLP)领域取得了革命性进展,其中 BERT 的出现标志着双向语言建模的强大能力。然而,BERT 也存在一些局限性,限制了其在生成任务中的表现。2019 年,由 Google 和 Carnegie Mellon University 联合提出的 XLNet 模型,通过引入 排列语言建模(Permuted Language Modeling, PLM)Transformer-XL 结构,打破了 BERT 的瓶颈,并在多个 NLP 任务中实现了超越。

本文将从 XLNet 的核心概念、设计原理、优势与局限 等方面,详细介绍这款强大的预训练语言模型。


1. XLNet 是什么?

XLNet 是一种基于 Transformer 的预训练语言模型,旨在结合自回归模型(如 GPT)和自编码模型(如 BERT)的优势,解决 BERT 的以下局限性:

  1. 预训练和微调不一致:BERT 的 Masked Language Model(MLM)依赖于遮掩的 [MASK] token,但在微调时 [MASK] 不存在,导致不一致。
  2. 上下文利用有限:BERT 只能预测被遮掩 token,而未显式建模所有 token 的联合分布。

为此,XLNet 提出了 排列语言建模,并结合了 Transformer-XL 的记忆机制,实现了对更长上下文的建模和对联合概率分布的显式优化。


2. 核心创新:排列语言建模(Permuted Language Modeling, PLM)

传统的语言模型训练目标通常是固定的:

  • 自回归模型(如 GPT):从左到右依次预测下一个 token。
  • 自编码模型(如 BERT):遮掩部分 token,然后预测这些 token。
(1) 排列语言建模的核心思想

XLNet 使用随机排列的方式改变 token 的预测顺序,例如:

  • 对于序列 x = [x1, x2, x3, x4, x5],生成随机排列 [x3, x1, x2, x5, x4]
  • 按照排列的顺序,模型依次预测 token(如预测 x3 时仅考虑排列中 x1, x2)。

通过排列语言建模,XLNet 显式优化了 token 的联合概率分布:
P ( x ) = ∏ t = 1 T P ( x z t ∣ x z 1 , . . .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机智的小神仙儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值