CNN用于句子分类时的超参数分析

本文是“A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification”这篇paper的阅读笔记。这篇paper的主要工作是对“Convolutional Naural Networks for Sentence Classification”这篇论文的模型进行了各种各样的对比试验,进而得到了一些关于超参数的设置经验。其实论文前面几章对实验内容和结果进行了详细介绍,但是我们可以直接在第五章中获得我们想要得到的超参数设置经验。接下来就记录一下:

  1. 对于预训练的词向量(glove, word2vec)而言,二者对不同分类任务各有优劣,但效果都比one-hot编码要强(虽然one-hot编码方式在文本分类任务中取得了比较好的效果)。
  2. 卷积核的窗口大小对实验结果有着比较重要的影响。首先,ws在1-10之间取值较好,且如果训练集中的句子长度较大(100+)时,我们可以考虑使用较大的ws以获取上下文关系。其次,对不同尺寸ws的窗口进行结合会对结果产生影响。当把与最优ws相近的ws结合时会提升效果,但是如果将距离最优ws较远的ws相结合时会损害分类性能。一般取为3-5~~
  3. 卷积核数量num_filters也对实验结果比较重要。最好不要超过600,超过600可能会导致过拟合。一般设为100-200~~
  4. pooling方式就使用1-max就可以。mean或者k-max pooling效果都不太好
  5. l2正则化效益很小,相比而言,dropout在神经网络中有着广泛的使用和很好的效果,dropout一般设为0.5
  6. 激活函数的话,目前广泛应用的是ReLU、tanh函数。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer和CNN都是深度学习中常用的模型架构,它们有各自独特的优点和缺点。 Transformer的优点: 1. 处理序列数据效果好:Transformer是一种基于自注意力机制的序列建模方法,可以很好地处理序列数据,如自然语言文本数据。相比传统的循环神经网络(RNN),Transformer可以并行计算,加快训练速度。 2. 可扩展性强:Transformer模型结构简单,容易扩展。通过增加层数或者调整参数,可以很容易地增加模型的复杂度和性能。 3. 可解释性好:由于自注意力机制的存在,Transformer可以可视化每个输入元素与其他元素之间的关系,从而更好地理解模型的决策过程。 Transformer的缺点: 1. 对输入序列长度敏感:由于Transformer是基于自注意力机制构建的,因此在处理长序列数据,可能会遇到计算和存储资源不足的问题。 2. 需要大量的训练数据:Transformer模型需要大量的训练数据来达到良好的性能,否则容易出现过拟合等问题。 3. 对于非序列数据的处理能力有限:Transformer主要应用于序列数据的处理,对于其他类型的数据(如图像、音频)的处理能力有限。 CNN的优点: 1. 处理图像数据效果好:CNN是一种专门用于处理图像数据的模型,可以很好地捕捉图像中的局部特征。 2. 对于输入数据的不变性:CNN通过卷积层和池化层等操作,可以很好地提取输入数据中的平移、旋转、缩放等变换下的不变量,从而提高模型的泛化能力。 3. 计算效率高:由于CNN的卷积操作可以在多个位置共享权重,因此CNN的计算效率比较高。 CNN的缺点: 1. 对于非图像数据的处理能力有限:CNN主要应用于图像数据的处理,对于其他类型的数据(如自然语言文本)的处理能力有限。 2. 对于全局信息的捕捉能力有限:由于CNN主要关注局部特征的提取,因此可能无法很好地捕捉输入数据中的全局信息。 3. 需要大量的训练数据:CNN模型需要大量的训练数据来达到良好的性能,否则容易出现过拟合等问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值