RFID数据完整传输

在读写器与电子标签的无线通信中,存在许多干扰因素,最主要的干扰因素是信道噪声和多卡操作。在RFID系统中,为防止各种干扰和电子标签之间数据的碰撞,经常采用差错控制和防碰撞算法来分别解决这两个问题。

1)标签冲突:   

         a. 随机性解决方案  一般采用ALOHA算法;
         b. 确定性解决方案  一般采用树型搜索算法。
 
2)读写器冲突:

         a. 多个读写器在相同频段上运行引起的频率干扰;  
         b. 多个相邻的读写器试图与一个标签进行通信而引起的标签干扰。
         解决的方法:对相邻的读写器分配在不同的频率或时隙。
 

         差错控制是一种保证接收数据完整、准确的方法。在数字通信中,差错控制利用编码方法对传输中产生的差错进行控制,以提高数字消息传输的准确性。

1. 差错的分类
    (1)随机错误
    (2)突发错误
2. 差错的衡量指标
    误码率(Bit Error Ratio,BER)是衡量在规定时间内数据传输精确性的指标。

3.差错控制的基本方式
    差错控制编码可以分为检错码和纠错码。检错码能自动发现差错的编码; 纠错码不仅能发现差错,而且能自动纠正差错的编码。
    (1)反馈纠错(ARQ)
    (2)前向纠错(FEC)
    (3)混合纠错

(1) 信息码元与监督码元
    信息码元又称为信息序列或信息位,这是发端由信源编码得到的被传送的信息数据比特,通常以k表示。监督码元又称为监督位或附加数据比特,这是为了检纠错码而在信道编码时加入的判断数据位,监督码元通常以 r 表示。


(2)许用码组与禁用码组
(3)编码的效率
    编码效率越高,信道中用来传送信息码元的有效利用率就越高。编码效率的计算公式为


    (4)码重与码距

例题:

多路存取法

   “无线广播”式
           从读写器到多个电子标签的工作方式,读写器发送的信号同时被多个标签接收。
多路存取通信
              读写器的工作范围同时有多个电子标签,多个电子标签同时将数据传送给读写器

 

方法:

空分多路法(Space Division Multiple  Access,SDMA)

频分多路法(Frequency Division Multiple Access,FDMA)

时分多路法(Time Division Multiple Access,FDMA)
码分多路法(Code Division Multiple Access,CDMA)

防碰撞算法:

通道的平均吞吐率S为     

2)时隙ALOHA算法

      它是将信道分成许多时隙 (slot) ,每个时隙正好传送一个分组。时隙的长度由系统时钟决定,各控制单元必须与此时钟同步
     算法过程主要通过3个命令实现:
      (1)REQUEST(请求),使读写器作用范围内的所有标签同步,并促使标签在下一个时隙里将它的序列号传输给读写器;
      (2)SELECT(选择序列号),将一个事先确定的序列号作为参数发送给标签;
      (3)READ-DATA(读出数据),被选中的标签对此命令进行响应。

动态时隙ALOHA算法:

帧长度调整方法有两种:
           a. 根据前一帧通信攻取到的空闲时隙数、碰撞时隙数和成功时隙数来估计标签的数量,由估计量来调整下一帧的长度;
           b. 用REQUEST命令传送可供标签使用的时隙数时,如果有较多的标签在两个发生碰撞,就用下一个REQUEST命令增加可供使用的时隙数量(如2、4、8、16、32……),直至能够发现一个唯一的标签为止。

 

### 回答1: K-Means 聚类算法是一种常用的无监督学习算法,它可以将数据集划分为 K 个不同的类别,其中 K 是预先设定的。在 K-Means 算法中,我们需要指定 K 值和距离计算方法,然后通过迭代的方式不断调整聚类中心,直到达到某个停止准则为止。 下面我们以鸢尾花数据集为例,来实现 K-Means 聚类算法。 首先,我们需要导入数据集并进行预处理。这里我们使用 sklearn 中的 load_iris 函数来加载数据集,并使用 MinMaxScaler 对数据进行归一化处理: ``` python from sklearn.datasets import load_iris from sklearn.preprocessing import MinMaxScaler # 加载数据集 iris = load_iris() X = iris.data # 数据归一化 scaler = MinMaxScaler() X = scaler.fit_transform(X) ``` 接下来,我们需要实现 K-Means 算法。这里我们使用 scikit-learn 中的 KMeans 类来实现: ``` python from sklearn.cluster import KMeans # 设置 K 值 k = 3 # 初始化 KMeans 模型 kmeans = KMeans(n_clusters=k) # 训练模型并预测结果 y_pred = kmeans.fit_predict(X) ``` 最后,我们可以使用 Matplotlib 来可视化聚类结果: ``` python import matplotlib.pyplot as plt # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("K-Means Clustering") plt.show() ``` 运行以上代码,即可得到鸢尾花数据的聚类结果。 ### 回答2: K-Means聚类算法是一种常用的无监督学习方法,能够对数据进行聚类。在K-Means算法中,通过计算数据点与聚类中心的距离,将数据点归类到距离最近的聚类中心,从而实现数据的聚类。 鸢尾花数据是机器学习中常用的数据集之一,包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。这些样本被分为三个类别,分别是山鸢尾、变色鸢尾和维吉尼亚鸢尾。 使用K-Means聚类算法对鸢尾花数据进行聚类的过程如下: 1. 随机选择K个初始聚类中心。K代表要将数据聚成的类别数,这里我们选择K=3,即将鸢尾花数据聚成3个类别。 2. 对每个数据点,计算其与各个聚类中心的距离,并将其归类到距离最近的聚类中心。 3. 更新每个聚类中心的位置,将其移动到所归类数据点的平均位置。 4. 重复步骤2和3,直到聚类中心不再发生变化或达到预定的迭代次数。 通过上述步骤,可以将鸢尾花数据聚类成3个类别。每个类别中的数据点具有相似的特征,并且与其他类别中的数据点的特征有较大的区别。 K-Means聚类算法的优点是简单易实现,计算效率高。然而,这种算法对初始聚类中心的选择较为敏感,可能会收敛到局部最优解。因此,在应用K-Means算法时,需要进行多次实验,以避免得到不理想的聚类结果。同时,K-Means算法对于离群点比较敏感,离群点可能会影响聚类结果的准确性。 ### 回答3: K-Means 聚类算法是一种常用的无监督学习算法,主要用于将数据集中的样本划分成不同的簇。下面以实现鸢尾花数据的聚类为例进行解释。 首先,我们需要加载鸢尾花数据集,该数据集包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。我们将这些样本表示为一个150x4的矩阵。 然后,我们需要确定簇的数量 k,即要将数据集划分成几个簇。在这里,我们可以根据经验或者领域知识来选择一个合适的值。 接下来,我们需要初始化 k 个簇的中心点。可以随机从数据集中选取 k 个样本作为初始的簇中心点。 然后,对于每个样本,我们计算其与各个簇中心点的距离,并将其分配给距离最近的簇中心点所在的簇。 接着,我们更新每个簇的中心点,即将每个簇中的样本的特征均值作为新的簇中心点。 最后,我们重复执行以上两个步骤,直到簇中心点不再发生变化,或者到达预定的迭代次数。 完成聚类后,我们可以根据簇的中心点和每个样本所属的簇来进行结果的分析和可视化。例如,可以绘制不同簇中心点的特征值分布图,以及将样本点按簇的标签进行颜色分类的散点图等。 K-Means 聚类算法能够有效地将数据集划分为不同的簇,实现了对样本的聚类。在鸢尾花数据集这个例子中,我们可以根据花萼和花瓣的特征值将鸢尾花分为不同的类别,从而更好地了解这些花的分类情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路途…

点滴记录

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值