基于函数微分推导出的5个近似公式

博客内容展示了多个数学函数的近似公式,并通过具体数值验证了这些近似公式的准确性,包括指数函数、正弦函数、正切函数和指数增长函数的近似。对于每个函数,都给出了不同x值的计算结果,对比了实际值和近似值的差距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公式:

近似公式1:

验证:

xy=POWER(1+x,5)y=1+5x
1326
0.57.593753.5
0.253.0517578132.25
0.1251.8020324711.625
0.06251.3540811541.3125
0.031251.1663255991.15625
0.0156251.0806048521.078125
0.0078131.0396776391.039063
0.0039061.0196844351.019531
0.0019531.0098038471.009766

 近似公式2:

验证:

xy=sinxy=x
10.8414709851
0.50.4794255390.5
0.250.2474039590.25
0.1250.1246747330.125
0.06250.0624593180.0625
0.031250.0312449140.03125
0.0156250.0156243640.015625

 近似公式3:

 

验证:

xy=tanxy=x
11.5574081
0.50.5463020.5
0.250.2553420.25
0.1250.1256550.125
0.06250.0625820.0625
0.031250.031260.03125
0.0156250.0156260.015625
0.0078130.0078130.007813
0.0039060.0039060.003906
0.0019530.0019530.001953

 近似公式4:

验证:

xy=e^2y=1+x
12.7182822
0.51.6487211.5
0.251.2840251.25
0.1251.1331481.125
0.06251.0644941.0625
0.031251.0317431.03125
0.0156251.0157481.015625
0.0078131.0078431.007813
0.0039061.0039141.003906
0.0019531.0019551.001953

 近似公式5:

验证:

 

xy=ln(1+x)y=x
10.6931471
0.50.4054650.5
0.250.2231440.25
0.1250.1177830.125
0.06250.0606250.0625
0.031250.0307720.03125
0.0156250.0155040.015625
0.0078130.0077820.007813
0.0039060.0038990.003906
0.0019530.0019510.001953

Hull-White模型是金融工程中常用的随机波动率模型,它通过引入波动率的随机过程,使得模型能够更贴近真实市场情况。在这个模型框架下,推导欧式敲障碍期权的近似定价公式,通常需要运用到金融数学中的鞅方法和数学分析中的Taylor展开式。 参考资源链接:[Hull-White随机波动率模型下的欧式障碍期权定价及其模拟分析](https://wenku.csdn.net/doc/4bktq4b8f3?spm=1055.2569.3001.10343) 首先,鞅方法允许我们在风险中性测度下处理随机过程,并将期权定价问题转化为求解偏微分方程。在Hull-White模型中,波动率σ(t)被假设为一个随机过程,我们可以利用Ito引理将期权的动态转化为一个鞅过程。 其次,Taylor展开式能够帮助我们在波动率微小变化的假设下,对期权价格进行局部近似。通过将期权价格函数在某个点(通常是初始波动率)附近进行展开,并保留到一阶或二阶项,我们可以得到期权价格的近似显式解。 具体操作如下: 1. 定义期权的支付函数,并建立随机微分方程来描述期权价格的变化。 2. 使用Ito引理将期权价格的随机微分方程转化为风险中性测度下的鞅过程。 3. 基于Black-Scholes公式,选择合适的波动率σ(t)作为当前时间点的近似值,并应用Taylor展开式对期权价格进行展开。 4. 通过对模型参数的适当选择,确保近似解在实际应用中的准确度和稳定性。 为了更深入理解和操作这一过程,建议查阅《Hull-White随机波动率模型下的欧式障碍期权定价及其模拟分析》。这篇文章详细介绍了如何利用鞅方法和Taylor展开式结合Hull-White模型,进行障碍期权的定价与模拟。此外,文章中还包含了模拟分析的部分,通过对比蒙特卡洛模拟方法,验证了近似解的精度和适用性。对于那些希望更全面掌握随机波动率模型和障碍期权定价的读者来说,这是一份宝贵的资源。 参考资源链接:[Hull-White随机波动率模型下的欧式障碍期权定价及其模拟分析](https://wenku.csdn.net/doc/4bktq4b8f3?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉淀期待未来9527

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值