§3.3 泰勒(Taylor)公式
一、 Taylor多项式
设
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可导,微分学中有近似计算公式:
f
(
x
0
+
Δ
x
)
≈
f
(
x
0
)
+
f
′
(
x
0
)
Δ
x
f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x
f(x0+Δx)≈f(x0)+f′(x0)Δx
利用这个近似计算公式可以计算
x
0
x_0
x0 附近的函数值,例如计算
1.002
\sqrt{1.002}
1.002。
若记
x
=
x
0
+
Δ
x
x = x_0 + \Delta x
x=x0+Δx,则
Δ
x
=
x
−
x
0
\Delta x = x - x_0
Δx=x−x0,近似计算公式变为:
f
(
x
)
≈
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
f(x) \approx f(x_0) + f'(x_0) (x - x_0)
f(x)≈f(x0)+f′(x0)(x−x0)
我们换个角度来看这个近似公式:
- 左端是一个函数 f ( x ) f(x) f(x),通常表示一条曲线。
- 右端是关于 ( x − x 0 ) (x - x_0) (x−x0) 的一次多项式函数,表示一条直线。
这个近似关系即“用直线近似表示曲线”,我们常称之为“以直代曲”。在逼近论中,这被称为“一次密切”。显然,“一次密切”的逼近程度可能不够好。我们自然会想:能不能找到“二次密切”、“三次密切”,…,“ n n n 次密切”?并且, n n n 越大,密切程度(逼近效果)应该越好。
下面我们就来考虑,对于一个给定的函数 f ( x ) f(x) f(x),如何找到它的“ n n n 次密切”多项式。也就是说,已知函数 f ( x ) f(x) f(x),如何找到一个形如 a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n 的 n n n 次多项式来近似它?
这个 n n n 次多项式的形式是固定的,即包含从 ( x − x 0 ) (x - x_0) (x−x0) 的 0 0 0 次幂到 n n n 次幂的所有项。关键在于确定系数 a 0 , a 1 , a 2 , … , a n a_0, a_1, a_2, \ldots, a_n a0,a1,a2,…,an。
我们先以一个 n n n 次多项式函数 P n ( x ) P_n(x) Pn(x) 本身出发,看看如果将它表示成 a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n 的形式,这些系数是如何确定的。然后,我们将这个思想推广到一般函数 f ( x ) f(x) f(x)。
确定多项式系数:
设
P
n
(
x
)
=
a
0
+
a
1
(
x
−
x
0
)
+
a
2
(
x
−
x
0
)
2
+
⋯
+
a
n
(
x
−
x
0
)
n
P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n
Pn(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n。
(注:任何
n
n
n 次多项式函数总可以表示成这种形式,例如
x
2
+
1
=
2
+
2
(
x
−
1
)
+
(
x
−
1
)
2
x^2 + 1 = 2 + 2(x - 1) + (x - 1)^2
x2+1=2+2(x−1)+(x−1)2 是在
x
0
=
1
x_0 = 1
x0=1 处的展开)。
下面我们通过 P n ( x ) P_n(x) Pn(x) 及其导数在 x 0 x_0 x0 点的值来确定系数 a 0 , a 1 , a 2 , … , a n a_0, a_1, a_2, \ldots, a_n a0,a1,a2,…,an。
-
令 x = x 0 x = x_0 x=x0,得:
P n ( x 0 ) = a 0 + 0 + 0 + ⋯ + 0 ⟹ a 0 = P n ( x 0 ) P_n(x_0) = a_0 + 0 + 0 + \cdots + 0 \implies \boxed{a_0 = P_n(x_0)} Pn(x0)=a0+0+0+⋯+0⟹a0=Pn(x0) -
对 P n ( x ) P_n(x) Pn(x) 求一阶导数:
P n ′ ( x ) = a 1 + 2 a 2 ( x − x 0 ) + 3 a 3 ( x − x 0 ) 2 + ⋯ + n a n ( x − x 0 ) n − 1 P_n'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \cdots + na_n(x - x_0)^{n-1} Pn′(x)=a1+2a2(x−x0)+3a3(x−x0)2+⋯+nan(x−x0)n−1
令 x = x 0 x = x_0 x=x0,得:
P n ′ ( x 0 ) = a 1 + 0 + 0 + ⋯ + 0 ⟹ a 1 = P n ′ ( x 0 ) P_n'(x_0) = a_1 + 0 + 0 + \cdots + 0 \implies \boxed{a_1 = P_n'(x_0)} Pn′(x0)=a1+0+0+⋯+0⟹a1=Pn′(x0) -
对 P n ′ ( x ) P_n'(x) Pn′(x) 再求导(即求 P n ( x ) P_n(x) Pn(x) 的二阶导数):
P n ′ ′ ( x ) = 2 a 2 + 3 × 2 a 3 ( x − x 0 ) + ⋯ + n ( n − 1 ) a n ( x − x 0 ) n − 2 P_n''(x) = 2a_2 + 3 \times 2 a_3(x - x_0) + \cdots + n(n-1)a_n(x - x_0)^{n-2} Pn′′(x)=2a2+3×2a3(x−x0)+⋯+n(n−1)an(x−x0)n−2
令 x = x 0 x = x_0 x=x0,得:
P n ′ ′ ( x 0 ) = 2 a 2 + 0 + ⋯ + 0 ⟹ a 2 = P n ′ ′ ( x 0 ) 2 ! P_n''(x_0) = 2a_2 + 0 + \cdots + 0 \implies \boxed{a_2 = \frac{P_n''(x_0)}{2!}} Pn′′(x0)=2a2+0+⋯+0⟹a2=2!Pn′′(x0) -
继续求导,求 P n ( x ) P_n(x) Pn(x) 的三阶导数:
P n ′ ′ ′ ( x ) = 3 × 2 a 3 + 4 × 3 × 2 a 4 ( x − x 0 ) + ⋯ + n ( n − 1 ) ( n − 2 ) a n ( x − x 0 ) n − 3 P_n'''(x) = 3 \times 2 a_3 + 4 \times 3 \times 2 a_4(x - x_0) + \cdots + n(n-1)(n-2)a_n(x - x_0)^{n-3} Pn′′′(x)=3×2a3+4×3×2a4(x−x0)+⋯+n(n−1)(n−2)an(x−x0)n−3
令 x = x 0 x = x_0 x=x0,得:
P n ′ ′ ′ ( x 0 ) = 3 × 2 × 1 a 3 + 0 + ⋯ + 0 ⟹ a 3 = P n ′ ′ ′ ( x 0 ) 3 ! P_n'''(x_0) = 3 \times 2 \times 1 a_3 + 0 + \cdots + 0 \implies \boxed{a_3 = \frac{P_n'''(x_0)}{3!}} Pn′′′(x0)=3×2×1a3+0+⋯+0⟹a3=3!Pn′′′(x0) -
依此类推,对 P n ( x ) P_n(x) Pn(x) 求 k k k 阶导数 P n ( k ) ( x ) P_n^{(k)}(x) Pn(k)(x),会得到:
P n ( k ) ( x ) = k ! a k + ( k + 1 ) ! a k + 1 ( x − x 0 ) + ⋯ + n ! ( n − k ) ! a n ( x − x 0 ) n − k P_n^{(k)}(x) = k! a_k + (k+1)! a_{k+1}(x - x_0) + \cdots + \frac{n!}{(n-k)!} a_n (x - x_0)^{n-k} Pn(k)(x)=k!ak+(k+1)!ak+1(x−x0)+⋯+(n−k)!n!an(x−x0)n−k
令 x = x 0 x = x_0 x=x0,得:
P n ( k ) ( x 0 ) = k ! a k ⟹ a k = P n ( k ) ( x 0 ) k ! P_n^{(k)}(x_0) = k! a_k \implies \boxed{a_k = \frac{P_n^{(k)}(x_0)}{k!}} Pn(k)(x0)=k!ak⟹ak=k!Pn(k)(x0) ( k = 0 , 1 , … , n k = 0, 1, \ldots, n k=0,1,…,n)
特别地,当 k = n k=n k=n 时, P n ( n ) ( x ) = n ! a n P_n^{(n)}(x) = n! a_n Pn(n)(x)=n!an,所以 a n = P n ( n ) ( x 0 ) n ! a_n = \frac{P_n^{(n)}(x_0)}{n!} an=n!Pn(n)(x0)。
总结: 对于
n
n
n 次多项式函数
P
n
(
x
)
=
a
0
+
a
1
(
x
−
x
0
)
+
⋯
+
a
n
(
x
−
x
0
)
n
P_n(x) = a_0 + a_1(x - x_0) + \cdots + a_n(x - x_0)^n
Pn(x)=a0+a1(x−x0)+⋯+an(x−x0)n,其系数由
P
n
(
x
)
P_n(x)
Pn(x) 在
x
0
x_0
x0 点的各阶导数决定:
a
k
=
P
n
(
k
)
(
x
0
)
k
!
,
k
=
0
,
1
,
2
,
…
,
n
a_k = \frac{P_n^{(k)}(x_0)}{k!}, \quad k = 0, 1, 2, \ldots, n
ak=k!Pn(k)(x0),k=0,1,2,…,n
(其中
P
n
(
0
)
(
x
0
)
=
P
n
(
x
0
)
P_n^{(0)}(x_0) = P_n(x_0)
Pn(0)(x0)=Pn(x0) 且
0
!
=
1
0! = 1
0!=1)
推广到一般函数:
现在,我们希望用一个 n n n 次多项式来近似一个更一般的函数 f ( x ) f(x) f(x)。一个自然的想法是,让这个多项式在 x 0 x_0 x0 点的函数值以及直到 n n n 阶的导数值都与 f ( x ) f(x) f(x) 在 x 0 x_0 x0 点的相应值相等。
若函数
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处存在
n
n
n 阶导数,我们定义一个
n
n
n 次多项式,使其系数满足与上面多项式类似的关系:
a
k
=
f
(
k
)
(
x
0
)
k
!
,
k
=
0
,
1
,
2
,
…
,
n
a_k = \frac{f^{(k)}(x_0)}{k!}, \quad k = 0, 1, 2, \ldots, n
ak=k!f(k)(x0),k=0,1,2,…,n
这个多项式就是
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处的“
n
n
n 次密切”多项式,称为
n
n
n 次Taylor多项式,记作
T
n
(
x
)
T_n(x)
Tn(x):
T
n
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
\boxed{T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}
Tn(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n
或者写成求和形式:
T
n
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k
Tn(x)=k=0∑nk!f(k)(x0)(x−x0)k
注:
- 根据构造,
f
(
x
)
f(x)
f(x) 与
T
n
(
x
)
T_n(x)
Tn(x) 在
x
0
x_0
x0 处具有相同的函数值和直到
n
n
n 阶的各阶导数值,即:
f ( x 0 ) = T n ( x 0 ) f(x_0) = T_n(x_0) f(x0)=Tn(x0)
f ′ ( x 0 ) = T n ′ ( x 0 ) f'(x_0) = T_n'(x_0) f′(x0)=Tn′(x0)
f ′ ′ ( x 0 ) = T n ′ ′ ( x 0 ) f''(x_0) = T_n''(x_0) f′′(x0)=Tn′′(x0)
⋯ \cdots ⋯
f ( n ) ( x 0 ) = T n ( n ) ( x 0 ) f^{(n)}(x_0) = T_n^{(n)}(x_0) f(n)(x0)=Tn(n)(x0)
(可以自行验证 T n ( x ) T_n(x) Tn(x) 的各阶导数在 x 0 x_0 x0 的值)。 -
f
(
x
)
f(x)
f(x) 与
T
n
(
x
)
T_n(x)
Tn(x) 的差称为
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处的
n
n
n 次Taylor余项,记作
R
n
(
x
)
R_n(x)
Rn(x):
R n ( x ) = f ( x ) − T n ( x ) R_n(x) = f(x) - T_n(x) Rn(x)=f(x)−Tn(x)
显然有:- f ( x ) = T n ( x ) + R n ( x ) f(x) = T_n(x) + R_n(x) f(x)=Tn(x)+Rn(x)
- R n ( k ) ( x ) = f ( k ) ( x ) − T n ( k ) ( x ) R_n^{(k)}(x) = f^{(k)}(x) - T_n^{(k)}(x) Rn(k)(x)=f(k)(x)−Tn(k)(x),并且 R n ( k ) ( x 0 ) = f ( k ) ( x 0 ) − T n ( k ) ( x 0 ) = 0 R_n^{(k)}(x_0) = f^{(k)}(x_0) - T_n^{(k)}(x_0) = 0 Rn(k)(x0)=f(k)(x0)−Tn(k)(x0)=0,对于 k = 0 , 1 , 2 , … , n k = 0, 1, 2, \ldots, n k=0,1,2,…,n 都成立。
二、 Taylor公式
Taylor公式给出了函数 f ( x ) f(x) f(x) 与其Taylor多项式 T n ( x ) T_n(x) Tn(x) 之间的关系,即对余项 R n ( x ) R_n(x) Rn(x) 进行了描述。有两种常用的带有不同形式余项的Taylor公式。
(1) Taylor定理 (带Peano余项)
定理: 若
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处存在
n
n
n 阶导数,则有:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
R
n
(
x
)
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)
f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)
其中,余项
R
n
(
x
)
=
o
(
(
x
−
x
0
)
n
)
R_n(x) = o((x - x_0)^n)
Rn(x)=o((x−x0)n) (当
x
→
x
0
x \to x_0
x→x0 时)。
也就是说:
f
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
+
o
(
(
x
−
x
0
)
n
)
\boxed{f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)}
f(x)=k=0∑nk!f(k)(x0)(x−x0)k+o((x−x0)n)
证明思路:
只需证明
lim
x
→
x
0
R
n
(
x
)
(
x
−
x
0
)
n
=
0
\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0
limx→x0(x−x0)nRn(x)=0。
令
Q
(
x
)
=
(
x
−
x
0
)
n
Q(x) = (x - x_0)^n
Q(x)=(x−x0)n。我们知道
R
n
(
x
0
)
=
R
n
′
(
x
0
)
=
⋯
=
R
n
(
n
)
(
x
0
)
=
0
R_n(x_0) = R_n'(x_0) = \cdots = R_n^{(n)}(x_0) = 0
Rn(x0)=Rn′(x0)=⋯=Rn(n)(x0)=0。
同时,
Q
(
x
0
)
=
Q
′
(
x
0
)
=
⋯
=
Q
(
n
−
1
)
(
x
0
)
=
0
Q(x_0) = Q'(x_0) = \cdots = Q^{(n-1)}(x_0) = 0
Q(x0)=Q′(x0)=⋯=Q(n−1)(x0)=0,但
Q
(
n
)
(
x
)
=
n
!
Q^{(n)}(x) = n!
Q(n)(x)=n!。
考虑极限
lim
x
→
x
0
R
n
(
x
)
Q
(
x
)
\lim_{x \to x_0} \frac{R_n(x)}{Q(x)}
limx→x0Q(x)Rn(x),这是一个
0
0
\frac{0}{0}
00 型极限。
反复应用洛必达法则
n
n
n 次:
lim
x
→
x
0
R
n
(
x
)
Q
(
x
)
=
lim
x
→
x
0
R
n
′
(
x
)
Q
′
(
x
)
=
lim
x
→
x
0
R
n
′
′
(
x
)
Q
′
′
(
x
)
=
⋯
\lim_{x \to x_0} \frac{R_n(x)}{Q(x)} = \lim_{x \to x_0} \frac{R_n'(x)}{Q'(x)} = \lim_{x \to x_0} \frac{R_n''(x)}{Q''(x)} = \cdots
x→x0limQ(x)Rn(x)=x→x0limQ′(x)Rn′(x)=x→x0limQ′′(x)Rn′′(x)=⋯
⋯
=
lim
x
→
x
0
R
n
(
n
)
(
x
)
Q
(
n
)
(
x
)
=
lim
x
→
x
0
R
n
(
n
)
(
x
)
n
!
\cdots = \lim_{x \to x_0} \frac{R_n^{(n)}(x)}{Q^{(n)}(x)} = \lim_{x \to x_0} \frac{R_n^{(n)}(x)}{n!}
⋯=x→x0limQ(n)(x)Rn(n)(x)=x→x0limn!Rn(n)(x)
由于
R
n
(
n
)
(
x
)
=
f
(
n
)
(
x
)
−
T
n
(
n
)
(
x
)
=
f
(
n
)
(
x
)
−
f
(
n
)
(
x
0
)
R_n^{(n)}(x) = f^{(n)}(x) - T_n^{(n)}(x) = f^{(n)}(x) - f^{(n)}(x_0)
Rn(n)(x)=f(n)(x)−Tn(n)(x)=f(n)(x)−f(n)(x0),
且
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处存在
n
n
n 阶导数,意味着
f
(
n
)
(
x
)
f^{(n)}(x)
f(n)(x) 在
x
0
x_0
x0 处连续(如果
n
n
n 阶导数存在于
x
0
x_0
x0 的邻域内)或者至少
f
(
n
−
1
)
(
x
)
f^{(n-1)}(x)
f(n−1)(x) 在
x
0
x_0
x0 处可导。严格来说,仅
n
n
n 阶导数在
x
0
x_0
x0 点存在即可保证
lim
x
→
x
0
R
n
(
n
)
(
x
)
=
R
n
(
n
)
(
x
0
)
=
0
\lim_{x \to x_0} R_n^{(n)}(x) = R_n^{(n)}(x_0) = 0
limx→x0Rn(n)(x)=Rn(n)(x0)=0。
(更严谨的证明需要利用导数定义或Peano形式的导数定义)。
注:原文的证明最后一步
lim
x
→
x
0
R
n
(
n
)
(
x
)
n
!
=
0
\lim_{x\rightarrow x_0}\frac{R_n^{(n)}(x)}{n!}=0
limx→x0n!Rn(n)(x)=0 需要
R
n
(
n
)
(
x
0
)
=
0
R_n^{(n)}(x_0)=0
Rn(n)(x0)=0 并且
R
n
(
n
)
(
x
)
R_n^{(n)}(x)
Rn(n)(x) 在
x
→
x
0
x \to x_0
x→x0 时趋于
0
0
0。
R
n
(
n
)
(
x
0
)
=
f
(
n
)
(
x
0
)
−
T
n
(
n
)
(
x
0
)
=
f
(
n
)
(
x
0
)
−
f
(
n
)
(
x
0
)
=
0
R_n^{(n)}(x_0)=f^{(n)}(x_0) - T_n^{(n)}(x_0) = f^{(n)}(x_0) - f^{(n)}(x_0) = 0
Rn(n)(x0)=f(n)(x0)−Tn(n)(x0)=f(n)(x0)−f(n)(x0)=0 是成立的。利用
f
(
n
)
(
x
0
)
f^{(n)}(x_0)
f(n)(x0) 的定义可以更严格地完成最后一步。
所以, lim x → x 0 R n ( x ) ( x − x 0 ) n = 0 n ! = 0 \lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \frac{0}{n!} = 0 limx→x0(x−x0)nRn(x)=n!0=0,即 R n ( x ) = o ( ( x − x 0 ) n ) R_n(x) = o((x - x_0)^n) Rn(x)=o((x−x0)n)。证毕。
注:
- 该定理说明 f ( x ) f(x) f(x) 与它的“ n n n 次密切” T n ( x ) T_n(x) Tn(x) 相差一个比 ( x − x 0 ) n (x - x_0)^n (x−x0)n 更高阶的无穷小量(当 x → x 0 x \to x_0 x→x0 时)。
- 这个公式称为带有 Peano(佩亚诺)余项 的Taylor公式。Peano余项给出了误差的阶,但不给出具体的误差表达式。
- 特别地,当
x
0
=
0
x_0 = 0
x0=0 时,公式变为:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n) f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+o(xn)
这称为带有 Peano(佩亚诺)余项 的 Maclaurin(麦克劳林)公式。
(2) Taylor中值定理 (带Lagrange余项)
定理: 若
f
(
x
)
f(x)
f(x) 在包含
x
0
x_0
x0 的某个开区间
(
a
,
b
)
(a, b)
(a,b) 内(即包含
x
0
x_0
x0 的某个领域内)存在直到
(
n
+
1
)
(n + 1)
(n+1) 阶连续导数,则对该区间内任意一点
x
≠
x
0
x \neq x_0
x=x0,存在一点
ξ
\xi
ξ 严格介于
x
x
x 与
x
0
x_0
x0 之间,使得:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
R
n
(
x
)
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)
f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)
其中,余项
R
n
(
x
)
R_n(x)
Rn(x) 可以表示为:
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
\boxed{R_n(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!} (x - x_0)^{n + 1}}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1
证明思路:
只需证明
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1。
固定
x
x
x,令
G
(
t
)
=
R
n
(
t
)
=
f
(
t
)
−
T
n
(
t
)
G(t) = R_n(t) = f(t) - T_n(t)
G(t)=Rn(t)=f(t)−Tn(t),其中
T
n
(
t
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
t
−
x
0
)
k
T_n(t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k
Tn(t)=∑k=0nk!f(k)(x0)(t−x0)k。
令
Q
(
t
)
=
(
t
−
x
0
)
n
+
1
Q(t) = (t - x_0)^{n+1}
Q(t)=(t−x0)n+1。
我们知道
G
(
x
0
)
=
G
′
(
x
0
)
=
⋯
=
G
(
n
)
(
x
0
)
=
0
G(x_0) = G'(x_0) = \cdots = G^{(n)}(x_0) = 0
G(x0)=G′(x0)=⋯=G(n)(x0)=0。
同时
Q
(
x
0
)
=
Q
′
(
x
0
)
=
⋯
=
Q
(
n
)
(
x
0
)
=
0
Q(x_0) = Q'(x_0) = \cdots = Q^{(n)}(x_0) = 0
Q(x0)=Q′(x0)=⋯=Q(n)(x0)=0,且
Q
(
n
+
1
)
(
t
)
=
(
n
+
1
)
!
Q^{(n+1)}(t) = (n+1)!
Q(n+1)(t)=(n+1)!。
考虑比值
G
(
x
)
Q
(
x
)
\frac{G(x)}{Q(x)}
Q(x)G(x)。由于
G
(
x
0
)
=
0
G(x_0)=0
G(x0)=0 和
Q
(
x
0
)
=
0
Q(x_0)=0
Q(x0)=0,根据(广义)柯西中值定理,存在
ξ
1
\xi_1
ξ1 介于
x
0
x_0
x0 和
x
x
x 之间,使得:
G
(
x
)
Q
(
x
)
=
G
(
x
)
−
G
(
x
0
)
Q
(
x
)
−
Q
(
x
0
)
=
G
′
(
ξ
1
)
Q
′
(
ξ
1
)
\frac{G(x)}{Q(x)} = \frac{G(x) - G(x_0)}{Q(x) - Q(x_0)} = \frac{G'(\xi_1)}{Q'(\xi_1)}
Q(x)G(x)=Q(x)−Q(x0)G(x)−G(x0)=Q′(ξ1)G′(ξ1)
由于
G
′
(
x
0
)
=
0
G'(x_0) = 0
G′(x0)=0 和
Q
′
(
x
0
)
=
0
Q'(x_0) = 0
Q′(x0)=0,再对
G
′
(
ξ
1
)
Q
′
(
ξ
1
)
\frac{G'(\xi_1)}{Q'(\xi_1)}
Q′(ξ1)G′(ξ1) 应用柯西中值定理(以
ξ
1
\xi_1
ξ1 和
x
0
x_0
x0 为端点),存在
ξ
2
\xi_2
ξ2 介于
x
0
x_0
x0 和
ξ
1
\xi_1
ξ1 之间,使得:
G
′
(
ξ
1
)
Q
′
(
ξ
1
)
=
G
′
(
ξ
1
)
−
G
′
(
x
0
)
Q
′
(
ξ
1
)
−
Q
′
(
x
0
)
=
G
′
′
(
ξ
2
)
Q
′
′
(
ξ
2
)
\frac{G'(\xi_1)}{Q'(\xi_1)} = \frac{G'(\xi_1) - G'(x_0)}{Q'(\xi_1) - Q'(x_0)} = \frac{G''(\xi_2)}{Q''(\xi_2)}
Q′(ξ1)G′(ξ1)=Q′(ξ1)−Q′(x0)G′(ξ1)−G′(x0)=Q′′(ξ2)G′′(ξ2)
重复这个过程
n
+
1
n+1
n+1 次,最终得到存在一个
ξ
\xi
ξ 介于
x
0
x_0
x0 和
x
x
x 之间(实际上
ξ
\xi
ξ 介于
x
0
x_0
x0 和
ξ
n
\xi_n
ξn 之间,
ξ
n
\xi_n
ξn 介于
x
0
x_0
x0 和
ξ
n
−
1
\xi_{n-1}
ξn−1 之间…
ξ
1
\xi_1
ξ1 介于
x
0
x_0
x0 和
x
x
x 之间,因此
ξ
\xi
ξ 也介于
x
0
x_0
x0 和
x
x
x 之间),使得:
G
(
x
)
Q
(
x
)
=
G
(
n
+
1
)
(
ξ
)
Q
(
n
+
1
)
(
ξ
)
\frac{G(x)}{Q(x)} = \frac{G^{(n+1)}(\xi)}{Q^{(n+1)}(\xi)}
Q(x)G(x)=Q(n+1)(ξ)G(n+1)(ξ)
我们知道
G
(
n
+
1
)
(
t
)
=
f
(
n
+
1
)
(
t
)
−
T
n
(
n
+
1
)
(
t
)
G^{(n+1)}(t) = f^{(n+1)}(t) - T_n^{(n+1)}(t)
G(n+1)(t)=f(n+1)(t)−Tn(n+1)(t)。由于
T
n
(
t
)
T_n(t)
Tn(t) 是
t
t
t 的
n
n
n 次多项式,其
(
n
+
1
)
(n+1)
(n+1) 阶导数为
0
0
0,即
T
n
(
n
+
1
)
(
t
)
=
0
T_n^{(n+1)}(t) = 0
Tn(n+1)(t)=0。所以
G
(
n
+
1
)
(
t
)
=
f
(
n
+
1
)
(
t
)
G^{(n+1)}(t) = f^{(n+1)}(t)
G(n+1)(t)=f(n+1)(t)。
而
Q
(
n
+
1
)
(
t
)
=
(
n
+
1
)
!
Q^{(n+1)}(t) = (n+1)!
Q(n+1)(t)=(n+1)!。
代入上式:
R
n
(
x
)
(
x
−
x
0
)
n
+
1
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
\frac{R_n(x)}{(x - x_0)^{n+1}} = \frac{f^{(n+1)}(\xi)}{(n+1)!}
(x−x0)n+1Rn(x)=(n+1)!f(n+1)(ξ)
因此,
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1。证毕。
注:
- 这个包含具体余项表达式的公式称为带有 Lagrange(拉格朗日)余项 的Taylor公式。Lagrange余项给出了误差的一个具体(虽然包含未知点
ξ
\xi
ξ)的表达式,常用于估计误差。
f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , ξ 介于 x 0 和 x 之间 f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi \text{ 介于 } x_0 \text{ 和 } x \text{ 之间} f(x)=k=0∑nk!f(k)(x0)(x−x0)k+(n+1)!f(n+1)(ξ)(x−x0)n+1,ξ 介于 x0 和 x 之间 - 当
n
=
0
n = 0
n=0 时,公式变为
f
(
x
)
=
f
(
x
0
)
+
f
(
1
)
(
ξ
)
1
!
(
x
−
x
0
)
1
f(x) = f(x_0) + \frac{f^{(1)}(\xi)}{1!} (x - x_0)^{1}
f(x)=f(x0)+1!f(1)(ξ)(x−x0)1,即:
f ( x ) = f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) f(x) = f(x_0) + f'(\xi)(x - x_0) f(x)=f(x0)+f′(ξ)(x−x0)
这正是 Lagrange中值定理。所以Taylor中值定理是Lagrange中值定理的推广。 - 当
x
0
=
0
x_0 = 0
x0=0 时,公式变为:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+(n+1)!f(n+1)(ξ)xn+1
其中 ξ \xi ξ 介于 0 0 0 和 x x x 之间。这称为带有 Lagrange余项 的 Maclaurin公式。
三、 Taylor公式展开
在实际应用中,我们经常需要将函数展开成Taylor公式(特别是Maclaurin公式)。主要有两种方法:直接法和间接法。这里我们主要关注带Peano余项的Maclaurin公式展开。
1. 直接法展开
直接法就是根据Maclaurin公式的定义,计算函数
f
(
x
)
f(x)
f(x) 在
x
=
0
x=0
x=0 处的各阶导数
f
(
k
)
(
0
)
f^{(k)}(0)
f(k)(0),然后代入公式:
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
f
′
′
(
0
)
2
!
x
2
+
⋯
+
f
(
n
)
(
0
)
n
!
x
n
+
o
(
x
n
)
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)
f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+o(xn)
例 1 将 f ( x ) = e x f(x) = e^x f(x)=ex 展成Maclaurin公式。
解:
计算各阶导数:
f
(
x
)
=
e
x
f(x) = e^x
f(x)=ex,
f
′
(
x
)
=
e
x
f'(x) = e^x
f′(x)=ex,
f
′
′
(
x
)
=
e
x
f''(x) = e^x
f′′(x)=ex, …,
f
(
n
)
(
x
)
=
e
x
f^{(n)}(x) = e^x
f(n)(x)=ex。
在
x
=
0
x=0
x=0 处的值:
f
(
0
)
=
e
0
=
1
f(0) = e^0 = 1
f(0)=e0=1,
f
′
(
0
)
=
1
f'(0) = 1
f′(0)=1,
f
′
′
(
0
)
=
1
f''(0) = 1
f′′(0)=1, …,
f
(
n
)
(
0
)
=
1
f^{(n)}(0) = 1
f(n)(0)=1。
代入Maclaurin公式:
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
+
x
n
n
!
+
o
(
x
n
)
\boxed{e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n)}
ex=1+x+2!x2+3!x3+⋯+n!xn+o(xn)
例 2 将 f ( x ) = sin x f(x) = \sin x f(x)=sinx 展成Maclaurin公式。
解:
计算各阶导数在
x
=
0
x=0
x=0 处的值:
f
(
x
)
=
sin
x
⟹
f
(
0
)
=
0
f(x) = \sin x \implies f(0) = 0
f(x)=sinx⟹f(0)=0
f
′
(
x
)
=
cos
x
⟹
f
′
(
0
)
=
1
f'(x) = \cos x \implies f'(0) = 1
f′(x)=cosx⟹f′(0)=1
f
′
′
(
x
)
=
−
sin
x
⟹
f
′
′
(
0
)
=
0
f''(x) = -\sin x \implies f''(0) = 0
f′′(x)=−sinx⟹f′′(0)=0
f
′
′
′
(
x
)
=
−
cos
x
⟹
f
′
′
′
(
0
)
=
−
1
f'''(x) = -\cos x \implies f'''(0) = -1
f′′′(x)=−cosx⟹f′′′(0)=−1
f
(
4
)
(
x
)
=
sin
x
⟹
f
(
4
)
(
0
)
=
0
f^{(4)}(x) = \sin x \implies f^{(4)}(0) = 0
f(4)(x)=sinx⟹f(4)(0)=0
…
导数值以周期
0
,
1
,
0
,
−
1
0, 1, 0, -1
0,1,0,−1 循环。
或者用
f
(
n
)
(
x
)
=
sin
(
x
+
n
π
2
)
f^{(n)}(x) = \sin(x + \frac{n\pi}{2})
f(n)(x)=sin(x+2nπ),得
f
(
n
)
(
0
)
=
sin
(
n
π
2
)
f^{(n)}(0) = \sin(\frac{n\pi}{2})
f(n)(0)=sin(2nπ)。
非零项出现在
k
=
1
,
3
,
5
,
…
k=1, 3, 5, \ldots
k=1,3,5,…。令
n
=
2
m
+
1
n = 2m+1
n=2m+1,则
f
(
2
m
+
1
)
(
0
)
=
(
−
1
)
m
f^{(2m+1)}(0) = (-1)^m
f(2m+1)(0)=(−1)m。
代入Maclaurin公式(展开到
x
2
n
+
1
x^{2n+1}
x2n+1 阶,余项为
o
(
x
2
n
+
2
)
o(x^{2n+2})
o(x2n+2) 或
o
(
x
2
n
+
1
)
o(x^{2n+1})
o(x2n+1) 都可以,这里按原文写):
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
⋯
+
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
+
o
(
x
2
n
+
1
)
\boxed{\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})}
sinx=x−3!x3+5!x5−7!x7+⋯+(−1)n(2n+1)!x2n+1+o(x2n+1)
注意:这里的
n
n
n 与公式中的
n
n
n 不是同一个。更清晰的写法是展开到某个特定阶数,或者写成求和。例如,展开到
x
2
N
+
1
x^{2N+1}
x2N+1 项:
sin
x
=
∑
k
=
0
N
(
−
1
)
k
x
2
k
+
1
(
2
k
+
1
)
!
+
o
(
x
2
N
+
2
)
\sin x = \sum_{k=0}^{N} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2N+2})
sinx=k=0∑N(−1)k(2k+1)!x2k+1+o(x2N+2)
例 3 将 f ( x ) = ( 1 + x ) a f(x) = (1 + x)^a f(x)=(1+x)a 展成Maclaurin公式(其中 a a a 是实数)。
解:
计算各阶导数:
f
(
x
)
=
(
1
+
x
)
a
f(x) = (1+x)^a
f(x)=(1+x)a
f
′
(
x
)
=
a
(
1
+
x
)
a
−
1
f'(x) = a(1+x)^{a-1}
f′(x)=a(1+x)a−1
f
′
′
(
x
)
=
a
(
a
−
1
)
(
1
+
x
)
a
−
2
f''(x) = a(a-1)(1+x)^{a-2}
f′′(x)=a(a−1)(1+x)a−2
f
′
′
′
(
x
)
=
a
(
a
−
1
)
(
a
−
2
)
(
1
+
x
)
a
−
3
f'''(x) = a(a-1)(a-2)(1+x)^{a-3}
f′′′(x)=a(a−1)(a−2)(1+x)a−3
…
f
(
n
)
(
x
)
=
a
(
a
−
1
)
(
a
−
2
)
⋯
(
a
−
n
+
1
)
(
1
+
x
)
a
−
n
f^{(n)}(x) = a(a-1)(a-2)\cdots(a-n+1)(1+x)^{a-n}
f(n)(x)=a(a−1)(a−2)⋯(a−n+1)(1+x)a−n
在
x
=
0
x=0
x=0 处的值:
f
(
0
)
=
1
f(0) = 1
f(0)=1
f
′
(
0
)
=
a
f'(0) = a
f′(0)=a
f
′
′
(
0
)
=
a
(
a
−
1
)
f''(0) = a(a-1)
f′′(0)=a(a−1)
f
′
′
′
(
0
)
=
a
(
a
−
1
)
(
a
−
2
)
f'''(0) = a(a-1)(a-2)
f′′′(0)=a(a−1)(a−2)
…
f
(
n
)
(
0
)
=
a
(
a
−
1
)
(
a
−
2
)
⋯
(
a
−
n
+
1
)
f^{(n)}(0) = a(a-1)(a-2)\cdots(a-n+1)
f(n)(0)=a(a−1)(a−2)⋯(a−n+1)
代入Maclaurin公式:
(
1
+
x
)
a
=
1
+
a
x
+
a
(
a
−
1
)
2
!
x
2
+
a
(
a
−
1
)
(
a
−
2
)
3
!
x
3
+
⋯
+
a
(
a
−
1
)
⋯
(
a
−
n
+
1
)
n
!
x
n
+
o
(
x
n
)
\boxed{(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \cdots + \frac{a(a-1)\cdots(a-n+1)}{n!}x^n + o(x^n)}
(1+x)a=1+ax+2!a(a−1)x2+3!a(a−1)(a−2)x3+⋯+n!a(a−1)⋯(a−n+1)xn+o(xn)
这个公式称为 二项式展开式。
注: 当
a
=
−
1
a = -1
a=−1 时,
f
(
x
)
=
(
1
+
x
)
−
1
=
1
1
+
x
f(x) = (1+x)^{-1} = \frac{1}{1+x}
f(x)=(1+x)−1=1+x1。
f
(
n
)
(
0
)
=
(
−
1
)
(
−
1
−
1
)
⋯
(
−
1
−
n
+
1
)
=
(
−
1
)
(
−
2
)
⋯
(
−
n
)
=
(
−
1
)
n
n
!
f^{(n)}(0) = (-1)(-1-1)\cdots(-1-n+1) = (-1)(-2)\cdots(-n) = (-1)^n n!
f(n)(0)=(−1)(−1−1)⋯(−1−n+1)=(−1)(−2)⋯(−n)=(−1)nn!。
所以,
1
1
+
x
=
1
+
(
−
1
)
1
!
x
+
(
−
1
)
(
−
2
)
2
!
x
2
+
⋯
+
(
−
1
)
n
n
!
n
!
x
n
+
o
(
x
n
)
\frac{1}{1+x} = 1 + \frac{(-1)}{1!}x + \frac{(-1)(-2)}{2!}x^2 + \cdots + \frac{(-1)^n n!}{n!}x^n + o(x^n)
1+x1=1+1!(−1)x+2!(−1)(−2)x2+⋯+n!(−1)nn!xn+o(xn)
1
1
+
x
=
1
−
x
+
x
2
−
x
3
+
⋯
+
(
−
1
)
n
x
n
+
o
(
x
n
)
\boxed{\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + o(x^n)}
1+x1=1−x+x2−x3+⋯+(−1)nxn+o(xn)
这与等比数列求和公式一致。
2. 间接法展开
间接法是指利用已知的基本函数的Maclaurin展开式,通过代换、四则运算、求导、积分等方法得到新函数的展开式。这种方法通常比直接求导更简便。
例 4 将 f ( x ) = cos x f(x) = \cos x f(x)=cosx 展成Maclaurin公式。
解:
我们已知
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
+
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
+
o
(
x
2
n
+
1
)
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})
sinx=x−3!x3+5!x5−⋯+(−1)n(2n+1)!x2n+1+o(x2n+1)。
由于
(
sin
x
)
′
=
cos
x
(\sin x)' = \cos x
(sinx)′=cosx,我们可以对
sin
x
\sin x
sinx 的展开式逐项求导(在收敛域内可以这样做,对于带Peano余项的公式,求导后余项的阶数需要调整):
对
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
+
(
−
1
)
N
x
2
N
+
1
(
2
N
+
1
)
!
+
o
(
x
2
N
+
2
)
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^N \frac{x^{2N+1}}{(2N+1)!} + o(x^{2N+2})
sinx=x−3!x3+5!x5−⋯+(−1)N(2N+1)!x2N+1+o(x2N+2) 求导,
得到:
cos
x
=
1
−
3
x
2
3
!
+
5
x
4
5
!
−
⋯
+
(
−
1
)
N
(
2
N
+
1
)
x
2
N
(
2
N
+
1
)
!
+
o
(
x
2
N
+
1
)
\cos x = 1 - \frac{3x^2}{3!} + \frac{5x^4}{5!} - \cdots + (-1)^N \frac{(2N+1)x^{2N}}{(2N+1)!} + o(x^{2N+1})
cosx=1−3!3x2+5!5x4−⋯+(−1)N(2N+1)!(2N+1)x2N+o(x2N+1)
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
⋯
+
(
−
1
)
n
x
2
n
(
2
n
)
!
+
o
(
x
2
n
)
\boxed{\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})}
cosx=1−2!x2+4!x4−6!x6+⋯+(−1)n(2n)!x2n+o(x2n)
注:求导后,
o
(
x
2
N
+
2
)
o(x^{2N+2})
o(x2N+2) 变为
o
(
x
2
N
+
1
)
o(x^{2N+1})
o(x2N+1)。最终的
o
(
x
2
n
)
o(x^{2n})
o(x2n) 是对应展开到
x
2
n
x^{2n}
x2n 项的余项。
例 5 将 f ( x ) = e x 2 2 f(x) = e^{\frac{x^2}{2}} f(x)=e2x2 展成Maclaurin公式。
解:
已知
e
u
=
1
+
u
+
u
2
2
!
+
u
3
3
!
+
⋯
+
u
n
n
!
+
o
(
u
n
)
e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots + \frac{u^n}{n!} + o(u^n)
eu=1+u+2!u2+3!u3+⋯+n!un+o(un)。
令
u
=
x
2
2
u = \frac{x^2}{2}
u=2x2。当
x
→
0
x \to 0
x→0 时,
u
→
0
u \to 0
u→0。代入上式:
e
x
2
2
=
1
+
(
x
2
2
)
+
(
x
2
2
)
2
2
!
+
(
x
2
2
)
3
3
!
+
⋯
+
(
x
2
2
)
n
n
!
+
o
(
(
x
2
2
)
n
)
e^{\frac{x^2}{2}} = 1 + \left(\frac{x^2}{2}\right) + \frac{(\frac{x^2}{2})^2}{2!} + \frac{(\frac{x^2}{2})^3}{3!} + \cdots + \frac{(\frac{x^2}{2})^n}{n!} + o\left(\left(\frac{x^2}{2}\right)^n\right)
e2x2=1+(2x2)+2!(2x2)2+3!(2x2)3+⋯+n!(2x2)n+o((2x2)n)
e
x
2
2
=
1
+
x
2
2
+
x
4
2
2
⋅
2
!
+
x
6
2
3
⋅
3
!
+
⋯
+
x
2
n
2
n
⋅
n
!
+
o
(
x
2
n
)
\boxed{e^{\frac{x^2}{2}} = 1 + \frac{x^2}{2} + \frac{x^4}{2^2 \cdot 2!} + \frac{x^6}{2^3 \cdot 3!} + \cdots + \frac{x^{2n}}{2^n \cdot n!} + o(x^{2n})}
e2x2=1+2x2+22⋅2!x4+23⋅3!x6+⋯+2n⋅n!x2n+o(x2n)
注:
o
(
(
x
2
2
)
n
)
=
o
(
x
2
n
)
o((\frac{x^2}{2})^n) = o(x^{2n})
o((2x2)n)=o(x2n)。
例 6 将 f ( x ) = 1 1 + x 2 f(x) = \frac{1}{1+x^2} f(x)=1+x21 展成Maclaurin公式。
解:
已知
1
1
+
u
=
1
−
u
+
u
2
−
u
3
+
⋯
+
(
−
1
)
n
u
n
+
o
(
u
n
)
\frac{1}{1+u} = 1 - u + u^2 - u^3 + \cdots + (-1)^n u^n + o(u^n)
1+u1=1−u+u2−u3+⋯+(−1)nun+o(un)。
令
u
=
x
2
u = x^2
u=x2。当
x
→
0
x \to 0
x→0 时,
u
→
0
u \to 0
u→0。代入上式:
1
1
+
x
2
=
1
−
(
x
2
)
+
(
x
2
)
2
−
(
x
2
)
3
+
⋯
+
(
−
1
)
n
(
x
2
)
n
+
o
(
(
x
2
)
n
)
\frac{1}{1+x^2} = 1 - (x^2) + (x^2)^2 - (x^2)^3 + \cdots + (-1)^n (x^2)^n + o((x^2)^n)
1+x21=1−(x2)+(x2)2−(x2)3+⋯+(−1)n(x2)n+o((x2)n)
1
1
+
x
2
=
1
−
x
2
+
x
4
−
x
6
+
⋯
+
(
−
1
)
n
x
2
n
+
o
(
x
2
n
)
\boxed{\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots + (-1)^n x^{2n} + o(x^{2n})}
1+x21=1−x2+x4−x6+⋯+(−1)nx2n+o(x2n)
例 7 将 f ( x ) = ln ( 1 + x ) f(x) = \ln(1+x) f(x)=ln(1+x) 展成Maclaurin公式。
解:
我们知道
(
ln
(
1
+
x
)
)
′
=
1
1
+
x
(\ln(1+x))' = \frac{1}{1+x}
(ln(1+x))′=1+x1。
已知
1
1
+
t
=
1
−
t
+
t
2
−
t
3
+
⋯
+
(
−
1
)
n
−
1
t
n
−
1
+
o
(
t
n
−
1
)
\frac{1}{1+t} = 1 - t + t^2 - t^3 + \cdots + (-1)^{n-1} t^{n-1} + o(t^{n-1})
1+t1=1−t+t2−t3+⋯+(−1)n−1tn−1+o(tn−1)。(展开到
n
−
1
n-1
n−1 阶)
由于
ln
(
1
+
x
)
=
∫
0
x
1
1
+
t
d
t
\ln(1+x) = \int_0^x \frac{1}{1+t} dt
ln(1+x)=∫0x1+t1dt,我们可以对
1
1
+
t
\frac{1}{1+t}
1+t1 的展开式逐项积分:
ln
(
1
+
x
)
=
∫
0
x
(
1
−
t
+
t
2
−
t
3
+
⋯
+
(
−
1
)
n
−
1
t
n
−
1
+
o
(
t
n
−
1
)
)
d
t
\ln(1+x) = \int_0^x (1 - t + t^2 - t^3 + \cdots + (-1)^{n-1} t^{n-1} + o(t^{n-1})) dt
ln(1+x)=∫0x(1−t+t2−t3+⋯+(−1)n−1tn−1+o(tn−1))dt
ln
(
1
+
x
)
=
[
t
−
t
2
2
+
t
3
3
−
t
4
4
+
⋯
+
(
−
1
)
n
−
1
t
n
n
]
0
x
+
∫
0
x
o
(
t
n
−
1
)
d
t
\ln(1+x) = \left[ t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots + (-1)^{n-1} \frac{t^n}{n} \right]_0^x + \int_0^x o(t^{n-1}) dt
ln(1+x)=[t−2t2+3t3−4t4+⋯+(−1)n−1ntn]0x+∫0xo(tn−1)dt
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
⋯
+
(
−
1
)
n
−
1
x
n
n
+
o
(
x
n
)
\boxed{\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)}
ln(1+x)=x−2x2+3x3−4x4+⋯+(−1)n−1nxn+o(xn)
注:
∫
0
x
o
(
t
n
−
1
)
d
t
=
o
(
x
n
)
\int_0^x o(t^{n-1}) dt = o(x^n)
∫0xo(tn−1)dt=o(xn)。
四、 应用
Taylor公式(特别是带Peano余项的Maclaurin公式)的一个重要应用是计算未定式极限,尤其是在使用洛必达法则求导比较复杂或繁琐时。
1. 计算极限
基本思想:将极限表达式中的函数用它们的Maclaurin展开式替换,通常展开到足以确定极限值的最低非零项即可。
例 8 计算 lim x → 0 cos x − e − x 2 2 x 4 \lim_{x\rightarrow 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4} limx→0x4cosx−e−2x2
解:
这是
0
0
\frac{0}{0}
00 型极限。直接使用洛必达法则需要求四次导数,比较麻烦。
考虑使用Maclaurin展开。由于分母是
x
4
x^4
x4,我们需要将分子中的函数展开到包含
x
4
x^4
x4 的项。
cos x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) = 1 − x 2 2 + x 4 24 + o ( x 4 ) \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) cosx=1−2!x2+4!x4+o(x4)=1−2x2+24x4+o(x4)
e
u
=
1
+
u
+
u
2
2
!
+
o
(
u
2
)
e^u = 1 + u + \frac{u^2}{2!} + o(u^2)
eu=1+u+2!u2+o(u2)。令
u
=
−
x
2
2
u = -\frac{x^2}{2}
u=−2x2,
e
−
x
2
2
=
1
+
(
−
x
2
2
)
+
(
−
x
2
2
)
2
2
!
+
o
(
(
−
x
2
2
)
2
)
e^{-\frac{x^2}{2}} = 1 + (-\frac{x^2}{2}) + \frac{(-\frac{x^2}{2})^2}{2!} + o((-\frac{x^2}{2})^2)
e−2x2=1+(−2x2)+2!(−2x2)2+o((−2x2)2)
e
−
x
2
2
=
1
−
x
2
2
+
x
4
8
+
o
(
x
4
)
e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4)
e−2x2=1−2x2+8x4+o(x4)
代入极限表达式:
lim
x
→
0
cos
x
−
e
−
x
2
2
x
4
=
lim
x
→
0
(
1
−
x
2
2
+
x
4
24
+
o
(
x
4
)
)
−
(
1
−
x
2
2
+
x
4
8
+
o
(
x
4
)
)
x
4
=
lim
x
→
0
(
1
24
−
1
8
)
x
4
+
o
(
x
4
)
x
4
=
lim
x
→
0
(
1
−
3
24
)
x
4
+
o
(
x
4
)
x
4
=
lim
x
→
0
−
2
24
x
4
+
o
(
x
4
)
x
4
=
lim
x
→
0
(
−
1
12
+
o
(
x
4
)
x
4
)
=
−
1
12
\begin{align*} \lim_{x\rightarrow 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4} &= \lim_{x\rightarrow 0} \frac{\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4)\right)}{x^4} \\ &= \lim_{x\rightarrow 0} \frac{(\frac{1}{24} - \frac{1}{8})x^4 + o(x^4)}{x^4} \\ &= \lim_{x\rightarrow 0} \frac{(\frac{1 - 3}{24})x^4 + o(x^4)}{x^4} \\ &= \lim_{x\rightarrow 0} \frac{-\frac{2}{24}x^4 + o(x^4)}{x^4} \\ &= \lim_{x\rightarrow 0} \left(-\frac{1}{12} + \frac{o(x^4)}{x^4}\right) \\ &= -\frac{1}{12} \end{align*}
x→0limx4cosx−e−2x2=x→0limx4(1−2x2+24x4+o(x4))−(1−2x2+8x4+o(x4))=x→0limx4(241−81)x4+o(x4)=x→0limx4(241−3)x4+o(x4)=x→0limx4−242x4+o(x4)=x→0lim(−121+x4o(x4))=−121
注:
- o ( x n ) ± o ( x n ) = o ( x n ) o(x^n) \pm o(x^n) = o(x^n) o(xn)±o(xn)=o(xn)。 o ( x n ) o(x^n) o(xn) 表示一类比 x n x^n xn 更高阶的无穷小函数,而不是一个函数。
- lim x → 0 o ( x n ) x n = 0 \lim_{x\rightarrow 0} \frac{o(x^n)}{x^n} = 0 limx→0xno(xn)=0。