一、法向量定义
定义:如果,那么向量
叫做平面
的法向量。平面
的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法
1、内积法
在给定的空间直角坐标系中,设平面 的法向量
=(x,y,1)[或
=(x,1,z)或
=(1,y,z)],在平面
内任找两个不共线的向量
,
。由
,得
·
=0且
·
=0,由此得到关于x,y的方程组,解此方程组即可得到
。
2、
任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为: