已知三点求平面的法向量 —— 两种方法

最近学图形学时遇到了这个问题,PPT 给的大概是一个通过线性代数的方法求的,有点看不懂。加上线性代数早就忘光了,更加是一脸茫然。但是这个知识点在高中讲过,自己却怎么也记不起来了,直到今天突然记起来了,特此记录一下。

问题描述

已知三维空间中三点 P 1 ( x 1 , y 1 , y 1 ) , P 2 ( x 2 , y 2 , y 2 ) , P 3 ( x 3 , y 3 , y 3 ) P_1(x_1, y_1, y_1),P_2(x_2, y_2, y_2),P_3(x_3, y_3, y_3) P1(x1,y1,y1)P2(x2,y2,y2)P3(x3,y3,y3)。要求求出这三个点构成平面的法向量。

高中知识

我们不妨设平面法向量 n → = ( x , y , z ) \overrightarrow{n}=(x, y, z) n =(x,y,z)

我们知道法向量是和平面垂直的,因此法向量也和该平面上任意一条向量相互垂直,即点积为 0。

利用这个性质,我们可以构造两个方程,此时
n → ・ P 1 P 2 → = 0 n → ・ P 1 P

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值