tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。
这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。
import tensorflow as tf;
c = tf.truncated_normal(shape=[2,10], mean=0, stddev=1) #shape,mean,stddev等都可以去除,函数会自动读取对应位置的值,但是去除后,可读性变差
with tf.Session() as sess:
print sess.run(c)
结果会生成一个 2行10列,mean± 2*stddev 之间的值