生生阶段的标准正态分布tf.truncated_normal()

tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。

这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。

import tensorflow as tf;  


c = tf.truncated_normal(shape=[2,10], mean=0, stddev=1)  #shape,mean,stddev等都可以去除,函数会自动读取对应位置的值,但是去除后,可读性变差

with tf.Session() as sess:  
    print sess.run(c)

结果会生成一个 2行10列,mean± 2*stddev 之间的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值