V0 为电容上的初始电压值;
V1 为电容最终可充到或放到的电压值;
Vt 为t时刻电容上的电压值。
则, Vt=“V0”+(V1-V0)* [1-exp(-t/RC)]
或, t = RC*Ln[(V1-V0)/(V1-Vt)]
求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC)
代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)]
既 [[1-exp(-t/RC)]=0.9;
exp(-t/RC)=0.1
- t/RC=ln(0.1)
t/RC=ln(10) ln10约等于2.3
也就是t=2.3RC
带入R=10k C=10uf得
C=Q/U=it/∆U =>C=VCCt/R/0.9VCC=>t=0.9RC
t=2.310k10uf=230ms
设V0 为电容上的初始电压值;V1 为电容最终可充到或放到的电压值;Vt 为t时刻电容上的电压值。
则:
Vt=V0 +(V1-V0)× [1-exp(-t/RC)]
或 t = RC × Ln[(V1 - V0)/(V1 - Vt)]
例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为: Vt=E × [1-exp(-t/RC)]
再如,初始电压为E的电容C通过R放电 , V0=E,V1=0,故放到t时刻电容上的电压为:
Vt=E × exp(-t/RC)
又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,充到2/3Vcc需要的时间
V0=Vcc/3,V1=Vcc, Vt=2*Vcc/3,
故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC
注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数