傅里叶变换有什么用?

本文探讨了傅里叶变换的基本概念及其在时域与频域之间的关系,揭示了其在信号处理和分析中的重要性。
摘要由CSDN通过智能技术生成
分离信号这种行为才是最关键,最必要,甚至最常见的行为,以至于我们无时无刻都在进行这种行为
比如我们耳朵能听到不同频率的声音,就是高音和低音,声音是由物体振动产生的,靠介质传播,让我们听到,传播的时候这些信号是能缠在一起的,但是为什么人耳能听出不同高音和低音呢?
就是因为可能人的听觉神经(这是生物机理,我不了解,但是大概是那个意思)能把不同频率的声音区分开,我们的大脑或者听觉神经是否做了傅立叶变换这我不知道,但是可以肯定的是,傅立叶变换就能起到这个效果。

我再总结一下啊:傅立叶变换之所以必要,是因为"分离不同信号"对我们人类来说已经是必须做的事,已经是无时无刻不在做的事!(以至于我们人类自己都没意识到)比如:看见不同的颜色,听到不同频率的声音,甚至尝到酸甜苦辣咸这五种不同的味道也是一种识别不同信号的表现。而傅立叶变换已经是一种最简单的通过频率来分离不同信号的方法了!如果想造一台机器把自然光中的七色成分分离出来怎么办?用三棱镜!如果想造台机器把一段音频文件不同频率的声音频谱显示出来怎么办?傅立叶变换!

1、傅立叶的核心思想就是所有的波都可以用多个正弦波叠加表示。
这里面的波包括从声音到光等所有波。
所以,对一个采集到的声音做傅立叶变化就能分出好几个频率的信号。
比如南非世界杯时,南非人吹的呜呜主拉的声音太吵了,那么对现场的音频做傅立叶变化(当然是对声音的数据做),会得到一个展开式,然后找出呜呜主拉的特征频率,去掉展开式中的那个频率的sin函数,再还原数据,就得到了没有呜呜主拉的嗡嗡声的现场声音。
而对图片的数据做傅立叶,然后增大高频信号的系数就可以提高图像的对比度。同样,相机自动对焦就是通过找图像的高频分量最大的时候,就是对好了。
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值