一篇文章讲懂为什么信号处理要用傅里叶变换?

前言:

作为一名本身学习通信工程的工科女,理论的学习固然是重要,但更多的我会,让自己从实际工程应用中发现问题,解决问题的角度去思考问题。在通信中有三门专业课,分别是《信号与系统》《数字信号处理》《现代信号处理》,而这三门课的公共思想都是对信号进行处理,在系统里进行。因此“信号+系统”几乎就构成了信号处理中的唯二核心词。

信号处理不仅实际工程应用广泛,当我们想要获取而考研学硕801000信息与通信工程虽也分多个方向,而其中必有信号与信息处理。

但我们今天的主题是“为什么信号处理要用傅里叶变换?”不说系统,只说下面这些

1信号分类
2为什么要进行信号处理
3以傅里叶变换说明信号处理流程

信号的分类

要想明确信号,就要明白信息,信号之间的关系。

信号就是信息的物理表现形式,或者定义为携载信息的自变量函数,信息是信号的具体内容。

而要理解信号分类可从下面两个角度分类进行记忆。

从物理分类角度来说:

从实际工程应用角度来说:

根据载体的不同,信号可以分为电的、声音的、光的、磁的、热的、机械的、生物医学的等各类信号。根据一个或多个产生源,信号可分为单通道信号和多通道信号,例如单声道音频、双声道立体声音频、五通道环绕声音频。信号表现上可分为任意时刻都能精确确定信号取值的确定信号,及任意时刻信号取值不能精确确定的随机信号。

信号的自变量可以是时间、频率、控件或者其他物理量,按自变量数划分,可以有一维的(多数是以时间或频率为自变量表示,例如音频、心跳等)、二维的(例如黑白图像信号的x,y坐标)、多维的(例如黑白视频信号的x,y坐标及时间t,彩色视频信号的红、绿、蓝三原色的三个三维信号组成的三通道信号)。

当然还有其他划分方法,例如周期信号与非周期信号,功率信号与能量信号等。

以声音信号为例讲述为什么要进行信号处理?

从实际问题分析

以声音信号为例,生活中我们无时无刻充斥着声音,举例,当你在公园散步,你会听到鸟鸣,大人交谈的声音,孩子哭闹的声音,歌手卖唱的声音……当你超级喜欢今天的鸟鸣,想要将鸟鸣的声音从嘈杂的声音中剥离出来,你又该如何?即从复杂多维信号中提取我们的目标信号。

而这里我们就需要有一个基础的知识,可以被人耳识别的声(频率在20 Hz~20000 Hz之间),我们称之为声音。小学或初中的物理课本就讲过,即我们常说声音是由振动产生,经由不同介质传播,而振动的快慢不同,带给我们的感受不同,就像男低音,女高音,海豚音,而如何定义这些声音的高低,需要有个衡量标准,即需要某个物理量代表振动的快慢,声音的高低。那这个物理量我们称之为“频率”。

百度百科:

其声音的本质是一种波。就像下图。

话说回来,既然知道我们想要的信号了,那么提取就好了。逻辑大家都明白,但重点是,怎么提取?如此多复杂的信号混叠在一起且很难用一个确切的函数表达出来,就算你用费劲九牛二虎之力用一大长串公式表达出来了,如此冗长且繁琐的公式又该如何处理,到这儿,到底该怎么办?

好,现在问题转变为如何用表达式准确表达信号,有了表达式再想如何进一步化简计算。哎,不禁感叹,不会分析问题的信号工程师不是好的数学家。

问题难点儿在哪儿?

问题描述:如何从复杂的信号中提出我们想要的信号

问题转换描述:如何用在某个域构建表达式去拟合能代表信号的表达式,并筛选出特定频率的一个或多个信号?(这里我们上文提出过,单一信号可由频率唯一表征)


到这儿,问题其实已经很清晰

step1:

我们只需要找到一种方式/公式来描述信号且尽量找到这个公式的最容易记忆的形式,毕竟人们都比较偏爱简单纯粹的东西。

step2:

将其转换到频域,毕竟分析复杂问题要善于找到他的单一可攻破的角度分析,就像英雄难过美人关,要抓住弱点,给他攻破。

如何对信号进行处理

问题攻破法宝

那么有没有这么一种方式能将复杂的信号表达出来呢?还真有。

你说这玩意儿谁研究的呢?他就是让·巴普蒂斯·约瑟夫·傅里叶。

一位因为坚信热是神圣的美好的,最后生病也不去医院治,大夏天天的说捂一捂,烧烧火就好了,然后把自己热死了。没错,成也萧何,败也萧何。热死了。蛮敬佩他的精神,也感谢他的傅里叶级数造福后世,他的伟大之处远不止于此。

说回正题,到底什么是傅里叶变换,它是如何描述一个函数并将其分解成简单形式的合成呢?

傅里叶变换的介绍

解决问题一:将复杂的函数式用简单的成分加和

 傅里叶变换(Fourier Transform)是一种非常常见的数学工具,能够将一个函数(或时域信号)分解成一些基本频率的合成。

解决问题二:将问题转换到频域分析

它使我们可以将时域信号(例如波形图)转换成频域信号,因而更容易地看出信号中的频率成分。

至此,问题的解决办法已找到,那具体怎么进行的我们一起来看看

傅里叶解决问题的具体过程:

傅里叶变换的基本思想是将一个连续信号分解成一些正弦波(即基本频率)的加权和,即任意周期信号都能表示成单频正弦函数或余弦函数的和的形式,这些正弦波的频率、振幅和相位可以表征原信号的特征。/傅里叶变换可以在频域上对信号进行分析,以便检测特定频率的信号成分,因此常被用于信号处理、通信和图像处理等领域。

值得注意的是,傅里叶变换不仅可以对连续信号进行转换,还可以对离散信号(如数字信号)进行离散傅里叶变换(DFT)处理。

1.如何实现将任意周期信号表示成单频正弦函数或余弦函数的和的形式?


傅里叶分析之所以对正弦频率有十分理想的定位能力,这是因为傅里叶分析中采用的基函数,是具有正交性的三角函数系(正弦或余弦)。这种正交性是指三角函数系中任意两个不同函数的乘积,在区间[-π,π]的积分均为零,而函数系中任意一个函数的平方在区间[-π,π]的积分不为零。因此傅里叶变换的重要之处就是,它的本质就是信号与三角基函数相乘再积分,借助正交性将信号中的正弦分量以频率、幅值和相位三个物理量表征出来,达到正弦分量的独立化提取。以后要介绍的小波变换也是一样的,它们的不同就在于傅里叶变换中基函数是唯一的三角基函数,而在小波变换中基函数却不是唯一的,只要具有振荡、紧支特性,满足允许条件的函数都可以作为小波基函数。小下面我们慢慢道来。


傅里叶级数

高等数学中有说到,任何周期函数,只要满足迪利克雷收敛条件,都可以用傅里叶级数展开,所谓傅里叶级数展开形式,就其实就是用一堆周期成倍数关系的三角函数去近似逼近原函数。

讲到傅里叶级数,这里有几个基本知识点,我先列出来,大家看自己还能记得多少,如果忘了也没有关系,因为本文所涉及到的知识至少还可以从高等数学书上找到,最多也就回去翻翻书,把这部分知识再load进大脑即可。

a).三角级数

级数有很多种,如多项式级数,用x^n次幂去逼近原函数,除了多项式级数,还有三角级数,就是用一组不同周期的函数去逼近原函数。

b).三角级数的正交性

所谓正交性,就是一组正交的三角函数作为基,那什么又是正交呢,我们知道,如果判断两个向量是否正交,如果它们点乘结果为0,则正交,对应到三角函数,如果两个三角函数相乘并在一个周期只的积分为0,则它们是正交的。比如cos(x)*sin(x)在(0,2pi)上的积分为0。而三角级数就是用一组正交的三角函数作为基,它们是:

1, cos(x), sin(x), cos(2x), sin(2x),....

一般周期函数的傅里叶级数

继续回顾一下书本知识,设f(t)是在[-l, l]上周期为2l的周期函数,满足迪利克雷收敛条件,展开成傅里叶级数

其中,

非周期函数的傅里叶级数

如果f(x)是非周期函数,并不满足傅里叶级数展开条件,怎么办呢,一般这种函数都是定义在一定区间上的,比如[0, l],即f(x)只在该区间上讨论才有意义,其它区间并没有定义。

那为了实现对f(x)的傅里叶级数展开,我们有两个办法,就是对f(x)在其它区间上补充定义,使之成为x轴上的周期函数,近而就可以套用(2)中周期函数的傅里叶级数展开了,请注意,这里是人为补充定义,说白了就是人为脑补出来的,f(x)在补充区间上并没有定义。那既然补充定义,可以随便补,只要补成周期函数就可以了,正常操作方法一般有两种,即奇延拓和偶延拓,就是补成奇函数或偶函数。

傅里叶级数的复数形式

高等数学上只是提了下傅里叶级数的复数形式,但其实从本章开始包括后面讨论傅里叶变换,都是更多地使用傅里叶级数的复数形式,所以这里非常有必要了解一下复数形式和三角函数形式的傅里叶的关系及其转化过程。

设周期为2l的周期函数f(t)的傅里叶级数为

其中,

利用欧拉公式

于是f(t)可化为

为了得到系数cn的表达式,把an,bn代入,得

将已得的结果合并写为

2.傅里叶变换如何使我们可以在频域上对信号进行分析?

先重复下原因,为什么要在频域上进行分析。因为简单。

当我们面对艰难的课题的时候,要静下心来,寻找能解决问题的关键点,当我们都习惯了从一个角度分析问题,就会陷入一种固化的状态,有时候从问题中跳脱出来解放自己,反而会找到新的解决办法。就像我们习惯了从时域去分析正弦波,忘却了频域。(本科阶段主要是时域和频域,到了研究生阶段会涉及调制域)

来个图感受下吧

下面是矩形波在频域里的图像

这两张图分开看我想大家都能看懂即第一张图给到你,好,我们能看出来是在时域角度的分析。第二张图给到你,也能理解某个信号在频域的图像分布,但如果说这俩是一个东西,只不过一个从正面看,一个从侧面看,分析的域不同罢了,让你将这两张图联系到一起,可能就糊涂了,就是一种似懂非懂的感觉。

我属于笨的,学了两年半才理解。现在一分钟让你学会。

可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为0的正弦波。


至此,我想你已经可以理解我们所讲的从另一个角度分析的过程了吧,当我们将问题分析到这儿,只是做了些储备工作,我们开始进入正题,正主傅里叶还没见过呢

(不论是e还是cos/sin 都是在表达一个东西 只不过表现形式不同罢了)


详细的声音信号处理过程

以语音信号为例,一般我们接触到的信号是一幅基于时间序列的音频声波图,也称为时域图。声音是介质振动在听觉系统中产生的反应。声音总可以被分解为不同频率不同强度正弦波的叠加(傅里叶变换)。声音有两个基本的物理属性:频率振幅。声音的振幅就是音量,频率的高低就是指音调,频率用赫兹(Hz)作单位。人耳只能听到20Hz到20khz范围的声音。

音频图上波峰的高低象征着声音的振幅大小,从物理角度解释,振幅就是声带偏离原来位置的大小,声带偏离原来的位置越大,则声音越大,波峰越高的地方意味着音频的振幅越高,也就是音量越大。而频率就是声带在单位时间内振动的次数,在音频图上可以看作是一个周期,频率越高,就意味着声带振动的次数越多,也就是音调越高。

直接时域上的音频图进行处理比较麻烦,所以一般会先将时域图按照不同的频率振幅分解成若干个音频和振幅不同的音频信号图。再将这些不同的信号图按照不同的振幅映射到一个平面图上,就是我们所说的频域图。

傅立叶变换对于信号的处理主要作用是将信号从时域图像转换到频域图像,其完整步骤如下:傅立叶变换(时域图→频域图)→频域图排序→去除指定频率的信号→频域图顺序还原→逆傅立叶变换(频域图→时域图)→时域图取模还原。

那么我们如此大费周章的去除信号中指定频段的信号目的是什么呢?当然是基于实际问题的处理,最常见的就是信号去噪,一般来说。信号中都会存在一些干扰的噪声信号,不利于信号的处理,而这些噪声信号的频段往往都是固定的,只要我们对信号进行傅立叶变换的操作,就很容易去除掉这些干扰的噪声信号了。

举个例子,我们在户外街道上录制一段语音,这段语音的信号中,实际是上包含了我们正常发出的声音和街道背景的噪声信号的。这个时候我们如果想要让录制的语音变得清晰一些,就需要对这段语音进行傅立叶变换的操作,目的就是去除噪声干扰。当然处理语音信号噪声的方法有很多,而傅里叶变换是必将经典的一种方法。

大多数情况下,噪声属于高频信号,去除掉噪声的音频图和原始音频图相比,差异不大,整体来看,由于有一部分的高频信号被去除了,去噪后的信号图比原图会更平滑一些。

声明:部分内容截取自网络,侵权删。


这所有的只是冰山一角,信号处理的流程大致了解,但具体到每一个环节都能扩展成庞大的知识体系,日子还长,我们慢慢道来

我是Grace,一名坚持追寻热爱的工科女生,我们下篇文章见。

  • 28
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值