简单了解一下傅里叶变换是什么,有什么用

本文介绍了傅里叶变换的基本概念,包括傅里叶级数和傅里叶变换,通过将复杂信号分解为周期性函数的和来理解其在时间和频率域之间的转换。文中以一个嘈杂菜市场的声音为例,帮助读者形象地理解这一概念,并提供了使用Python的numpy和matplotlib库进行傅里叶变换的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

如果您刚刚接触傅里叶变换,不要害怕。傅里叶变换的原理和应用可能会有些抽象和难以理解,但是只要有耐心和恒心,学习傅里叶变换还是非常有意义和值得的。本篇博客将会介绍傅里叶变换的基础概念和应用。

情景引入

设想你正走在一个嘈杂的菜市场里,耳边传来各种各样的声音。如果你仔细分辨,就可以慢慢分辨出来其中有小贩的叫卖声,有小孩子的哭闹声,有讨价还价的声音等等。傅里叶变换和这个情景非常类似,就是将一个复杂的信号在时间域和频率域之间进行转换。将你耳朵里听到的声波视作原始数据,那么傅里叶变换就是将这个复杂的声波转换成多个周期性的声波。

概念

对于傅里叶变换,我们 需要了解两个概念,一个是傅里叶级数,一个是傅里叶变换。我们先从傅里叶级数开始说起

傅里叶级数

高中里我们知道,将两个或者多个正(余)弦函数函数相加减,得到的结果也是周期性函数。例如我将Sin(x)和Cos(x)相加,得到的结果还是周期性函数。那么问题来了,对于任意一个周期性函数,能不能将其拆分成由多个正(余)弦函数的和呢?傅里叶发现是可以的。(具体怎么证明是可以的大家就自行了解吧)

所以这里引出了傅里叶级数的定理:任何一个周期函数都可以表示为一组正弦和余弦函数的级数。

具体来说,设f(x) 为一个周期为 T 的函数,则它的傅里叶级数可表示为: 

 看上去很复杂,将其用正弦表达并化简就变成:

 当然也可以将其用余弦表达。

因此我们就得到了三个东西,一个振幅c,一个ω可以认为是周期(真正周期为2π除以ω),一个相位ф。

如果以时间为x轴,函数值为y轴,绘制图像,那么我们可以得到这个函数(波)随着时间的推移呈现出周期性变化的图像(其实也就是原函数图像),我们称之为时域。

用图像示意一下。

三个波合成为一个波,就会得到一个新的周期性函数,下图红色的线就是新的周期性函数。红色的波由以上三种波合成。可以被分解为以上的三个波。

 

而如果以振幅c为y轴,以ω作为x轴,那么我们就可以画出一个柱形图。表示分成了几个波,每隔波的振幅又是多少,这个柱形图就被称为频域。与此同时,如果在这个柱形图中加入相位数据,就可以得到一个三维的图。

图像示意一下

代码示意:

 附上一小段代码,如何绘制上图,大家不用看也行,主要是介绍python怎么实现傅里叶变换的一个demo:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 生成测试数据(一个带有多个频率分量的正弦波信号)
t = np.linspace(0, 1, 1000)
y = 5 * np.sin(2*np.pi*10*t) + 2 * np.sin(2*np.pi*30*t) + 3 * np.sin(2*np.pi*60*t)

# 傅里叶变换得到振幅和相位信息
freqs = np.fft.fftfreq(len(t), t[1]-t[0])
fft_vals = np.fft.fft(y)
amps = np.abs(fft_vals)
phases = np.angle(fft_vals)

# 创建 3D 坐标轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 绘制 3D 傅里叶变换结果
ax.bar(freqs, amps, zs=phases, zdir='y')
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel('Phase')
ax.set_zlabel('Amplitude')

# 显示图形
plt.show()

稍微解释一下,使用 np.linspace 生成一个包含1000 个点的时间序列 t,从 0 到 1000,然后根据这个时间序列生成一个带有多个频率分量的正弦波信号 y,其中包括频率为 10 Hz、30 Hz 和 60 Hz 的三个正弦波分量。这个是准备了一个测试数据。

接着,使用 np.fft.fftfreq 函数计算离散傅里叶变换中的频率值,也就是求出了10,30,60Hz,储存在变量freqs中,而后使用 np.fft.fft 函数对信号 y 进行傅里叶变换得到频域上的振幅和相位信息fft_vals, 分别通过求模和求角的方式计算出真正的振幅和相位。

剩下的就是matplotlib绘制三维图片,最终得到的图像已经在上文展示。这个三维图就是频域。

傅里叶变换:

了解完傅里叶级数,我们就可以了解傅里叶变换了。那么傅里叶变换有两种,第一种是离散型傅里叶变换,第二种是连续性傅里叶变换。

离散型傅里叶变换

对于离散型傅里叶变换,很简单,我们回到之前的傅里叶级数的公式:

我们要了解一个公式叫做欧拉公式:

那么通过欧拉公式我们就能将傅里叶级数的原始公式转换成以指数形式表达的形式:

这个公式也就是我们常说的离散型傅里叶变换(Discrete Fourier Transform, DFT),其实就是傅里叶级数的指数型表达。

离散型傅里叶变换就是将连续时域信号转换为离散的频域信号的数学算法。例子在上文讲傅里叶级数的时候看到了,它的分解的结果是有限个。

连续性傅里叶变换

其实傅里叶变换的全名就叫连续性傅里叶变换,毕竟那些很有规律可以被分解成有限个波的的波在生活中也是少数。通常情况下,我们遇到的波都是没有规律的。

对于一个函数,他是没有周期的,那我们可以把他看作是一个周期为无穷的函数。

 我们对这个函数做一个积分,

 让原函数乘以e的-jωt次方,这个代表乘以其对应的一个正交积组合(理解不了这个也没关系)。然后做一个积分。这个积分就是连续性傅里叶变换。

这个积分有两种结果。如果它等于0,那么就没有ω,如果不等于0,那么他就有无数个ω。ω指组成这个波的其中一个波的ω。

写的正式一些

 这就是连续性傅里叶变换的公式。

连续傅里叶变换(CTFT)和离散型傅里叶变换(DFT)不同,CTFT 的结果是一个连续的函数,在频域上对应于所有可能的频率,因此其结果是无限个。

后话

记住公式就行。后续我会在OpenCV系列博客中实际应用傅里叶变换。

<think>嗯,用户问的是快速傅里叶变换,也就是FFT。首先,我需要确认用户的基础知识水平,可能他们知道傅里叶变换,但想了解其快速版本的区别和应用。应该先简单回顾傅里叶变换的基本概念,再引入FFT的必要性。 用户可能对数学原理不太熟悉,所以需要用通俗易懂的语言解释。要强调FFT如何提高计算效率,从O(n²)降到O(n log n),这对实际应用的重要性,比如信号处理、图像分析等。 可能需要分步骤解释:传统DFT的计算量问题,FFT的算法优化思路,比如分治策略,将大问题分解为小问题。但具体的蝶形运算可能太技术化,用户不一定需要深入,所以点到为止即可。 应用场景部分很重要,用户可能想知道FFT的实际用途,比如音频处理、通信系统、医学成像等,这些例子能帮助他们理解FFT的价值。另外,可能需要提到FFT在科学研究和工程中的普遍性,说明其基础地位。 还要注意用户可能的潜在需求,他们可能是在学习相关课程,或者项目开发中遇到需要处理信号的情况。因此,提供一些实际应用的例子会更有帮助。同时,避免使用过多数学公式,保持解释的直观性。 最后,确认回答结构清晰,先定义,再原理,然后应用,这样符合逻辑。检查是否有术语需要进一步解释,比如时域和频域,可能需要简单说明,但用户可能已经了解,所以不用展开太多。</think>**快速傅里叶变换(Fast Fourier Transform, FFT)** 是一种高效计算**离散傅里叶变换(DFT)**的算法,主要用于将信号从**时域**(时间或空间上的变化)转换到**频域**(频率成分的分布),或者反向转换。它的核心价值在于大幅降低计算复杂度,使许多实时信号处理成为可能。 --- ### **为什么需要FFT?** - **传统DFT的问题**:对长度为 \( N \) 的信号直接计算DFT,需要 \( O(N^2) \) 次运算,数据量较大时效率极低。 - **FFT的突破**:通过巧妙的数学分解(如分治策略),FFT将复杂度降低到 \( O(N \log N) \)。例如,\( N=1024 \) 时,FFT的计算速度比DFT快约100倍! --- ### **FFT的核心思想** 1. **分治策略**: - 将长度为 \( N \) 的信号(假设 \( N \) 是2的幂次)拆分成奇数和偶数索引的子序列。 - 递归计算子序列的DFT,再合并结果。 2. **利用对称性和周期性**: - DFT计算中存在大量重复运算,FFT通过避免重复计算来提升效率。 --- ### **FFT能做什么?** 1. **信号分析**: - 音频处理(如音乐频谱分析、降噪)。 - 通信系统(如5G信号调制解调)。 2. **图像处理**: - 压缩(JPEG)、边缘检测、滤波。 3. **科学工程**: - 雷达、医学成像(MRI)、地震波分析。 4. **数据压缩**: - 保留主要频率成分,去除冗余信息。 --- ### **直观比喻** 假设你要计算一首曲子中每个乐器的音量分布: - **DFT**:逐个检查每个可能的频率是否存在于音频中,耗时极长。 - **FFT**:通过“分组→计算→合并”的巧妙步骤,快速定位主要频率,就像用智能分类工具代替手动筛查。 --- ### **实际应用举例** - **WiFi/蓝牙**:用FFT快速解析无线信号中的数据传输。 - **Shazam听歌识曲**:通过FFT提取音频指纹,匹配数据库。 - **心电图(ECG)**:分析心脏信号的频率特征,辅助诊断。 --- ### **总结** FFT是数字信号处理的基石,将原本复杂的频域分析变得高效可行。它的出现彻底改变了通信、医学、多媒体等领域,是数学与工程结合的经典范例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值