前提:很重要!不要复杂化这个变换,它就是个简单的空间变换而已!
在坐标系空间中直线表达式:y=kx+b,坐标x,y是变量,k,b是常量。在霍夫空间中恰恰相反,k,b是变量,x,y是常量,那么公式就变成了:b=-xk+y。
P0点坐标(X0,Y0),直线op上所有的点的表达式都为y = k0x + b0, k0是斜率,b0为截距,是两个常量
转换到霍夫空间,既然k0和b0是两个不变的量,那它们就是一个点(k0,b0),同理推坐标系空间中的点假设为(x,y),某个点xy即为固定值常量
在霍夫空间中,刚好有条直线的斜率为x,截距为y,那么该直线表达式为:b=xk+b。相当于坐标系空间中的点与霍夫空间中的某条直线相对应,相互转化。
到这如果前面的能理解那么关键点来了:假设图像上有条直线,在坐标系空间中这条直线上的所有的点(假设N个点)是不是转化到霍夫空间中就有N条直线与之对应,且这些直线相交于一点,这个点的坐标(k,b)就是图像上直线的斜率与截距,霍夫空间中每个直线与直线的交点会计数投票,票选出交点数多的为坐标系空间中直线的斜率与截距,从而找出直线。
同理霍夫变换找圆是一样的原理。
以上就是我理解的霍夫变换简单化讲解。
深入浅出霍夫变换直线查找(圆查找)
最新推荐文章于 2025-10-18 23:13:33 发布