24/27/32寸电脑显示器尺寸多大?长宽多少厘米?显示屏长宽与面积的算法

 

 

首先大家要知道的是,平时大家所说的显示器多少多少寸是显示器的对角线长度,并且单位是英寸,1英寸=2.54cm

显示器对角线.png

注意,不算外壳!!

 

知道对角线长度后就可以根据勾股定理去计算出显示器的长宽与面积。(勾股定理公式:a2+b2=c2)

勾股定理公式.jpg

假如显示器的长宽是16:9,设显示器的长尾16x;则宽为9x;代入公式可得(16x)平方 + (9x)平方= c平方

再把对角线长度代入公式即可求出未知数x;从而求出显示器的长宽与面积

1英寸=2.54厘米

比如:

24寸显示器(16:9)的对角线长为:24 * 2.54 = 60.96cm;

代入公式得:(16x)平方 + (9x)平方 =60.96平方

求得:x ≈ 3.27

长为:16x = 16 * 3.27 = 52.33cm

宽为:9x = 9 * 3.27 = 29.44cm

面积为:52.33 * 29.44 ≈ 1540.6cm2

同理:

27寸显示器(16:9)的对角线长为:27 * 2.54 = 68.58cm;

代入公式后可以求出显示器的长和宽分别是:58.90cm x 33.134cm;

从而得出面积约为:1951.59平方厘米。

32寸显示器(16:9)的对角线长为:32 * 2.54 = 81.28cm;

代入公式后可以求出显示器的长和宽分别是:69.81cm * 39.27cm;

从而得出面积约为:2741.44平方厘米。

 

 

下面是24,27对比效果图

 

 

 

 

### 回答1: YOLO (You Only Look Once) 算法中的长宽是通过对输入像进行卷积神经网络 (Convolutional Neural Network, CNN) 操作得到的。在 YOLO 中,像会经过多层卷积和池化操作,从而将输入像映射到一个特征,在特征上检测出物体的边界框。这些边界框的长宽是通过特征上的单元格的数量确定的。 ### 回答2: 在YOLO算法中,目标的长宽是通过网络输出的边界框回归来得出的。YOLO算法主要分为两个步骤:特征提取和边界框回归。 首先,在特征提取阶段,YOLO利用深度卷积神经网络(CNN)从输入像中提取特征。该网络通过卷积和池化操作逐渐减小特征尺寸,并提取出不同层次和尺度的特征。 然后,在边界框回归阶段,YOLO利用网络输出的特征来预测目标的边界框。每个特征的每个单元负责预测一定数量的边界框。每个边界框由五个信息组成:边界框的中心坐标(x, y)、边界框的宽度(w)和高度(h),以及置信度得分(confidence)。中心坐标相对于单元的位置,宽度和高度则相对于整个像的大小。 在预测阶段,通过对边界框的置信度得分与分类概率进行加权,可以筛选出预测结果中最为准确的边界框。通过对目标的长宽进行回归,YOLO算法可以得到定位准确的边界框,从而实现目标检测的目的。 总的来说,YOLO算法通过网络输出的边界框回归来获得目标的长宽信息。这种方式充分利用了深度卷积神经网络的特征提取能力和回归算法的定位准确性,使得YOLO算法在实时目标检测任务中取得了较好的效果。 ### 回答3: YOLO算法中的长宽是通过特定的方式进行计算的。在YOLO算法中,首先将输入的像划分成一个固定大小的网格,然后每个网格负责预测一组边界框。对于每个边界框,需要预测其包围物体的长宽。 具体而言,在YOLO算法中,每个网格预测的边界框有一个预定义的锚框(Anchor box)作为参考。这些锚框是在训练过程中通过聚类得到的,能够有效地代表不同物体的形状特征。对于每个锚框,预测的边界框会调整其长宽以适应实际目标。 在每个网格中,通过应用卷积神经网络(CNN)对每个锚框预测一个相对于网格左上角坐标的偏移量,以及锚框的长宽。这些预测值经过非线性变换和激活函数,得到由相对坐标和尺寸表示的边界框。 然后,通过将网格中预测的边界框变换为原始像上的绝对坐标和尺寸,可以得到物体的最终位置和大小。这些长宽信息是通过网络的训练和优化过程得出的,以使边界框在物体检测任务中表现最优。 总的来说,YOLO算法通过在每个网格中预测一组边界框,并通过特定的计算方式,利用锚框和卷积神经网络来得到这些边界框的长宽信息,从而实现目标物体的检测。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值