[转载]千手观音是如何练成的?

注:转载《华为人》175期(2006-05)的文章

  大多数的观众是通过2005年中央电视台春节联欢晚会观看了《千手观音》,短短554秒的舞蹈却带给观众强烈的、长久的精神震撼。邰丽华和她的伙伴们将传说中的“千手观音”演绎得如此感人,创造出健全人也难以达到的完美境界,使不可能成为可能。

  舞台上只有一个“千手观音”,这个形象是由12名女演员和9名男演员共同完成的。这些演员们都懂得,在舞台上只有一个整体,不允许有个体。他们相互信任,忘记了自我,为共同的目标全力以赴,他们的成功是团队合作的成功。

  在感动之余,我们跟随各类媒体的报道去探究《千手观音》成功背后的艰辛,探究的过程是又一次被感动的过程。

  编导张继钢说:“为了达到训练效果,他们排练的艰苦程度远远超过健全人。有的时候我们是十分矛盾的,如果给他们的排练加一倍的难度,那他们训练的困难就是健全人的10倍。”

  《千手观音》中有很多站立动作,演员们首先就要练习站功。每个演员都要根据自己在队形中的位置练习站立。站的时候,把每个人手的位置用尺子量好刻在墙上,演员们对着墙上的自己的刻度练习,一站就是几个小时。

  当演员们排成一条纵队时,后一个演员的脚趾必须顶住前一个演员的脚后跟,鼻尖顶住前一个演员的后脑勺。这句话说起来简单,做起来非常困难,一般人连几分钟都坚持不下来,但是在排练厅里,演员们一站又是几个小时。

  观音打开千手的动作必须一步到位,一、二、三、四……必须按规定好的尺寸打开手,不能更改,这个难度非常大。一开始训练的时候,推出手总是不到位,老是犯错,老师看得很明显,但任凭老师怎么喊,演员们也听不见,怎么办呢?后来就用一台摄像机把每次的排练都拍摄下来,如果哪个位置出了问题,老师就在这个演员的手腕上用水彩笔画一道,然后对照录像纠错。一场训练下来,几乎每一个演员都被老师画过彩笔,最多的演员被画到三四十道。常犯错的演员特别自责,因为他错一次,大家就要陪他多练一次。可大家都不会指责他,一起连比带划地帮助他。

  音乐是舞蹈的灵魂,可这些演员们听不到音乐,他们是如何配合音乐、完美地演绎《千手观音》的呢?在舞台的四角,有四位手语老师用手语传达音乐的节奏,她们是演员的耳朵。为了更好地感受音乐,演员们在平日的训练中创造了“听音乐”的方法,他们把脸颊和手紧贴在音箱上,把音乐的声音开到最大,全身心地感受音乐的震动。经过无数次的排练之后,音乐的节奏已经融入了演员们的血液,在他们的心中已经有了一支永远随时为他们奏响的乐队。

  编导张继钢说,音乐不仅仅是节奏,还有情感、韵律、色彩。他至今依然不知道演员们如何感受音乐,但他们做得很好。

  为了让演员们理解《千手观音》的文化含义,编导张继钢和团领导找来很多背景资料、佛教的书籍向演员们讲解。每次排练前,编导都会告诉演员《千手观音》象征着爱--一个有爱心的人应该伸出一千只手去帮助别人,而一个善良的人也会被一千只手帮助。在舞蹈时他们内心只有一个声音,那就是爱!只有内心充满了爱,才能创造出如此和谐的意境。

  这些演员的平均年龄只有17岁,最小的才13岁,在他们身上看不到在其他同龄的孩子身上常见的坏习性,彼此之间真诚的交流常常让人感动,他们的内心和他们的外表一样美丽。

  《千手观音》在海内外共演出160多场,一次次征服观众,赢得了亿万掌声,但邰丽华和她的伙伴们耳朵里和心里依然只有宁静。

千手观音算法并不是一个广泛认可或标准的算法名称。它可能是一个特定领域或特定问题的自定义算法。为了给您提供一个相关的示例,我将假设它是一种用于图像处理或模式识别的算法,并提供一个简单的代码示例。 以下是一个使用Python和OpenCV库实现的简单图像处理算法示例,类似于您描述的"千手观音"概念。这个算法会检测图像中的多个手部轮廓: ```python import cv2 import numpy as np # 加载图像 image = cv2.imread('hand_image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 应用高斯模糊 blur = cv2.GaussianBlur(gray, (5, 5), 0) # 使用阈值处理 ret, thresh = cv2.threshold(blur, 70, 255, cv2.THRESH_BINARY_INV) # 查找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 绘制轮廓 cv2.drawContours(image, contours, -1, (0, 255, 0), 3) # 打印检测到的手部数量 print(f"Detected {len(contours)} hands") # 显示结果 cv2.imshow('Output', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这个示例代码展示了如何检测图像中的多个手部轮廓。它使用了OpenCV库中的图像处理功能,包括: 1. 图像读取和预处理 2. 高斯模糊用于减少噪点 3. 阈值处理将图像转换为二值图像 4. 轮廓检测 5. 在原始图像上绘制检测到的轮廓 请注意,这只是一个简化的示例,实际应用中可能需要更复杂的处理和更精确的手部检测算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值