基于ML-DecisionTree的多标签分类算法

本文介绍了ML-DT算法,这是一种应用于多标签分类的方法,利用决策树的信息增益来筛选特征。算法通过计算信息增益选择最佳特征进行样本划分,递归构建决策树直至满足停止条件。对于未知样本,通过遍历决策树得到各标签的置信概率,概率大于0.5的标签被视为样本的预测标签。
摘要由CSDN通过智能技术生成

     之前有一篇文章介绍了ML-KNN多标签分类算法,这里再介绍另一个算法ML-DT,算法思想比较简单,借鉴了决策树根据信息增益筛选特征生成分类器的思想,多标签场景下,信息增益表示的是该特征对所有标签的鉴别能力。

     算法大致思想如下:首先计算每个特征的信息增益IG,挑选IG最大的特征来划分样本为左右子集,递归下去,直到满足停止条件(例如叶子节点中子集样本数量为100)结束,对未知样本,沿根节点遍历一条路径到叶子节点,计算叶子节点样本子集中每个标签为0和1的概率,概率超过0.5的标签定为未知样本标签。

      先贴下伪代码,然后结合伪代码介绍算法细节:

      

1、第5行计算特征l在每个划分点的信息增益,并挑选最大的作为分支节点划分样本集



其中,MLEnt代表信息熵,

这个错误提示是因为 `DecisionTreeRegressor` 模型的 `maxBins` 参数默认值为 32,而你的数据集中某些类别型特征的取值数量大于 32,因此需要调整 `maxBins` 参数的值。 你可以尝试将 `maxBins` 参数的值设置为较大的值,例如 512,以匹配数据集中较大的类别型特征的取值数量。修改代码如下: ```python from pyspark.ml.regression import DecisionTreeRegressor # 创建 DecisionTreeRegressor 模型 dt = DecisionTreeRegressor(featuresCol="features", labelCol="avgPrice", maxBins=512) # 训练模型 model = dt.fit(trainingData) ``` 另外一种解决方法是删除数据集中的某些类别型特征,或者将它们转换为数值型特征,以减少 `maxBins` 参数的值。例如,可以使用 `StringIndexer` 将类别型特征转换为数值型特征。修改代码如下: ```python from pyspark.ml.feature import StringIndexer # 转换类别型特征 indexers = [StringIndexer(inputCol=col, outputCol=col+"_index") for col in ["proname", "type", "market"]] assembler = VectorAssembler(inputCols=["proname_index", "type_index", "market_index", "maxPrice", "minPrice"], outputCol="features") data = Pipeline(stages=indexers+[assembler]).fit(data).transform(data) # 创建 DecisionTreeRegressor 模型 dt = DecisionTreeRegressor(featuresCol="features", labelCol="avgPrice") # 训练模型 model = dt.fit(trainingData) ``` 需要注意的是,如果你删除了某些类别型特征,可能会影响模型的预测性能。因此,在删除特征之前,你应该对其进行仔细的分析和评估。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值